You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/tests/test_conv3d_op.py

200 lines
5.9 KiB

import unittest
import numpy as np
from op_test import OpTest
def conv3d_forward_naive(input, filter, group, conv_param):
in_n, in_c, in_d, in_h, in_w = input.shape
out_c, f_c, f_d, f_h, f_w = filter.shape
assert f_c * group == in_c
assert np.mod(out_c, group) == 0
sub_out_c = out_c / group
stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
'dilations']
out_d = 1 + (in_d + 2 * pad[0] - (dilation[0] * (f_d - 1) + 1)) / stride[0]
out_h = 1 + (in_h + 2 * pad[1] - (dilation[1] * (f_h - 1) + 1)) / stride[1]
out_w = 1 + (in_w + 2 * pad[2] - (dilation[2] * (f_w - 1) + 1)) / stride[2]
out = np.zeros((in_n, out_c, out_d, out_h, out_w))
d_bolck_d = (dilation[0] * (f_d - 1) + 1)
d_bolck_h = (dilation[1] * (f_h - 1) + 1)
d_bolck_w = (dilation[2] * (f_w - 1) + 1)
input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ),
(pad[2], )),
mode='constant',
constant_values=0)
filter_dilation = np.zeros((out_c, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
d_bolck_w:dilation[2]] = filter
for d in range(out_d):
for i in range(out_h):
for j in range(out_w):
for g in range(group):
input_pad_masked = \
input_pad[:, g * f_c:(g + 1) * f_c,
d * stride[0]:d * stride[0] + d_bolck_d,
i * stride[1]:i * stride[1] + d_bolck_h,
j * stride[2]:j * stride[2] + d_bolck_w]
f_sub = filter_dilation[g * sub_out_c:(g + 1) *
sub_out_c, :, :, :, :]
for k in range(sub_out_c):
out[:, g * sub_out_c + k, d, i, j] = \
np.sum(input_pad_masked * f_sub[k, :, :, :, :],
axis=(1, 2, 3, 4))
return out
class TestConv3dOp(OpTest):
def setUp(self):
self.init_group()
self.init_op_type()
self.init_dilation()
self.init_test_case()
conv3d_param = {
'stride': self.stride,
'pad': self.pad,
'dilations': self.dilations
}
input = np.random.random(self.input_size).astype("float32")
filter = np.random.random(self.filter_size).astype("float32")
output = conv3d_forward_naive(input, filter, self.groups,
conv3d_param).astype("float32")
self.inputs = {'Input': input, 'Filter': filter}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'groups': self.groups,
'dilations': self.dilations
}
self.outputs = {'Output': output}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
def test_check_grad_no_filter(self):
self.check_grad(
['Input'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
self.check_grad(
['Filter'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Input']))
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 4, 4, 4] # NCDHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3, 3]
def init_dilation(self):
self.dilations = [1, 1, 1]
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv3d"
class TestCase1(TestConv3dOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 4, 4, 4] # NCDHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 3, 3, 3]
class TestWithGroup1(TestConv3dOp):
def init_group(self):
self.groups = 3
class TestWithGroup2(TestCase1):
def init_group(self):
self.groups = 3
class TestWith1x1(TestConv3dOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 4, 4, 4] # NCHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 1, 1, 1]
def init_dilation(self):
self.dilations = [1, 1, 1]
def init_group(self):
self.groups = 3
class TestWithDilation(TestConv3dOp):
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.input_size = [2, 3, 6, 6, 6] # NCDHW
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] / self.groups
self.filter_size = [6, f_c, 2, 2, 2]
def init_dilation(self):
self.dilations = [2, 2, 2]
def init_group(self):
self.groups = 3
class TestCudnn(TestConv3dOp):
def init_op_type(self):
self.op_type = "conv3d_cudnn"
class TestWithGroup1Cudnn(TestWithGroup1):
def init_op_type(self):
self.op_type = "conv3d_cudnn"
class TestWithGroup2Cudnn(TestWithGroup2):
def init_op_type(self):
self.op_type = "conv3d_cudnn"
class TestWith1x1Cudnn(TestWith1x1):
def init_op_type(self):
self.op_type = "conv3d_cudnn"
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
# class TestWithDilationCudnn(TestWithDilation):
# def init_op_type(self):
# self.op_type = "conv3d_cudnn"
if __name__ == '__main__':
unittest.main()