You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
4.6 KiB
149 lines
4.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include "glog/logging.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::LoDTensor;
|
|
using framework::Tensor;
|
|
|
|
template <typename T>
|
|
inline T sigmoid(T x) {
|
|
return 1. / (1. + exp(-x));
|
|
}
|
|
|
|
template <typename T>
|
|
inline T tanh(T x) {
|
|
return 2. * sigmoid(2. * x) - 1.;
|
|
}
|
|
|
|
template <typename Place, typename T>
|
|
class LstmUnitKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto* x_tensor = ctx.Input<framework::Tensor>("X");
|
|
auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
|
|
auto* c_tensor = ctx.Output<framework::Tensor>("C");
|
|
auto* h_tensor = ctx.Output<framework::Tensor>("H");
|
|
|
|
auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
|
|
|
|
int b_size = c_tensor->dims()[0];
|
|
int D = c_tensor->dims()[1];
|
|
|
|
T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
|
|
T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
const T* X = x_tensor->data<T>();
|
|
const T* C_prev = c_prev_tensor->data<T>();
|
|
|
|
for (int n = 0; n < b_size; ++n) {
|
|
for (int d = 0; d < D; ++d) {
|
|
const T i = sigmoid(X[d]);
|
|
const T f = sigmoid(X[1 * D + d] + forget_bias);
|
|
const T o = sigmoid(X[2 * D + d]);
|
|
const T g = tanh(X[3 * D + d]);
|
|
const T c_prev = C_prev[d];
|
|
const T c = f * c_prev + i * g;
|
|
C[d] = c;
|
|
const T tanh_c = tanh(c);
|
|
H[d] = o * tanh_c;
|
|
}
|
|
C_prev += D;
|
|
X += 4 * D;
|
|
C += D;
|
|
H += D;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Place, typename T>
|
|
class LstmUnitGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto x_tensor = ctx.Input<Tensor>("X");
|
|
auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
|
|
auto c_tensor = ctx.Input<Tensor>("C");
|
|
auto h_tensor = ctx.Input<Tensor>("H");
|
|
|
|
auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
|
|
auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
|
|
|
|
auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto c_prev_diff_tensor =
|
|
ctx.Output<Tensor>(framework::GradVarName("C_prev"));
|
|
|
|
auto* X = x_tensor->data<T>();
|
|
auto* C_prev = c_prev_tensor->data<T>();
|
|
auto* C = c_tensor->data<T>();
|
|
auto* H = h_tensor->data<T>();
|
|
|
|
auto* H_diff = hdiff_tensor->data<T>();
|
|
auto* C_diff = cdiff_tensor->data<T>();
|
|
|
|
auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
|
|
auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int N = c_tensor->dims()[0];
|
|
int D = c_tensor->dims()[1];
|
|
|
|
auto forget_bias = static_cast<T>(ctx.Attr<float>("forget_bias"));
|
|
|
|
for (int n = 0; n < N; ++n) {
|
|
for (int d = 0; d < D; ++d) {
|
|
T* c_prev_diff = C_prev_diff + d;
|
|
T* i_diff = X_diff + d;
|
|
T* f_diff = X_diff + 1 * D + d;
|
|
T* o_diff = X_diff + 2 * D + d;
|
|
T* g_diff = X_diff + 3 * D + d;
|
|
|
|
const T i = sigmoid(X[d]);
|
|
const T f = sigmoid(X[1 * D + d] + forget_bias);
|
|
const T o = sigmoid(X[2 * D + d]);
|
|
const T g = tanh(X[3 * D + d]);
|
|
const T c_prev = C_prev[d];
|
|
const T c = C[d];
|
|
const T tanh_c = tanh(c);
|
|
const T c_term_diff = C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c);
|
|
*c_prev_diff = c_term_diff * f;
|
|
*i_diff = c_term_diff * g * i * (1 - i);
|
|
*f_diff = c_term_diff * c_prev * f * (1 - f);
|
|
*o_diff = H_diff[d] * tanh_c * o * (1 - o);
|
|
*g_diff = c_term_diff * i * (1 - g * g);
|
|
}
|
|
C_prev += D;
|
|
X += 4 * D;
|
|
C += D;
|
|
H += D;
|
|
C_diff += D;
|
|
H_diff += D;
|
|
X_diff += 4 * D;
|
|
C_prev_diff += D;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|