You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
5.1 KiB
132 lines
5.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/smooth_l1_loss_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SmoothL1LossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "X must be initialized.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Y must be initialized.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
PADDLE_ENFORCE_EQ(x_dims, y_dims, "The shape of X and Y must be the same.");
|
|
PADDLE_ENFORCE_GE(x_dims.size(), 2,
|
|
"The tensor rank of X must be at least 2.");
|
|
if (ctx->HasInput("InsideWeight")) {
|
|
PADDLE_ENFORCE(ctx->HasInput("OutsideWeight"),
|
|
"If weights are provided, must specify both "
|
|
"inside and outside weights.");
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("InsideWeight"), x_dims,
|
|
"The shape of InsideWeight must be same as X.");
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("OutsideWeight"), x_dims,
|
|
"The shape of OutsideWeight must be same as X.");
|
|
}
|
|
|
|
ctx->SetOutputDim("Diff", x_dims);
|
|
// loss is a two-rank tensor
|
|
ctx->SetOutputDim("Out", {x_dims[0], 1});
|
|
}
|
|
};
|
|
|
|
template <typename AttrType>
|
|
class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SmoothL1LossOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The input tensor of smooth l1 loss op."
|
|
"The rank should be greater or equal to 2 with shape "
|
|
"[batch_size, value_dim1, value_dim2, ..., value_dimN]");
|
|
AddInput("Y",
|
|
"The target tensor of smooth l1 loss op "
|
|
"with the same shape as X.");
|
|
AddInput("InsideWeight",
|
|
"Optional input tensor of smooth l1 loss op with the same shape "
|
|
"as X. If provided, the result of (X - Y) will be multiplied "
|
|
"by this tensor element by element.");
|
|
AddInput("OutsideWeight",
|
|
"Optinal input of smooth l1 loss op with the same shape as X."
|
|
"If provided, the output smooth l1 loss will be multiplied by "
|
|
"this tensor element by element.");
|
|
AddOutput("Diff", "Intermediate variable to cache InsideWeight*(X-Y).")
|
|
.AsIntermediate();
|
|
AddOutput("Out", "Smooth l1 loss.");
|
|
AddAttr<AttrType>("sigma",
|
|
"Hyper parameter of smooth l1 loss op."
|
|
"A float scalar with default value 3.0.")
|
|
.SetDefault(3.0);
|
|
AddComment(R"DOC(
|
|
Compute smooth l1 loss for input and target. The operator take the 1st
|
|
dimension of input as batch size. For each instance, it will compute
|
|
smooth l1 loss element by element first and sum all losses to one value.
|
|
So the output shape is [batch_size, 1].
|
|
|
|
The equation is:
|
|
loss = 0.5 * (sigma * (x-y))^2 if abs(x - y) < 1 / sigma^2
|
|
abs(x - y) - 0.5 / sigma^2 otherwise
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SmoothL1LossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContextBase* ctx) const override {
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
PADDLE_ENFORCE_GE(out_dims.size(), 2,
|
|
"The tensor rank of Input(Out@Grad) should be 2.");
|
|
PADDLE_ENFORCE_EQ(out_dims[0], in_dims[0],
|
|
"The 1st dimension of Input(Out@Grad) must be "
|
|
"same as input.");
|
|
PADDLE_ENFORCE_EQ(out_dims[1], 1,
|
|
"The 2nd dimension of Input(Out@Grad) must be 1.");
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, in_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, in_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp,
|
|
ops::SmoothL1LossOpMaker<float>, smooth_l1_loss_grad,
|
|
ops::SmoothL1LossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
smooth_l1_loss, ops::SmoothL1LossKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
smooth_l1_loss_grad,
|
|
ops::SmoothL1LossGradKernel<paddle::platform::CPUPlace, float>);
|