You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/framework/tests/test_layers.py

63 lines
2.3 KiB

from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost, conv2d_layer
from paddle.v2.framework.framework import Program, g_program
import paddle.v2.framework.core as core
import unittest
class TestBook(unittest.TestCase):
def test_fit_a_line(self):
program = Program()
x = data_layer(
name='x', shape=[13], data_type='float32', program=program)
y_predict = fc_layer(input=x, size=1, act=None, program=program)
y = data_layer(
name='y', shape=[1], data_type='float32', program=program)
cost = square_error_cost(input=y_predict, label=y, program=program)
avg_cost = mean(x=cost, program=program)
self.assertIsNotNone(avg_cost)
program.append_backward(avg_cost, set())
print str(program)
def test_recognize_digits_mlp(self):
program = Program()
# Change g_program, so the rest layers use `g_program`
images = data_layer(
name='pixel', shape=[784], data_type='float32', program=program)
label = data_layer(
name='label', shape=[1], data_type='int32', program=program)
hidden1 = fc_layer(input=images, size=128, act='relu', program=program)
hidden2 = fc_layer(input=hidden1, size=64, act='relu', program=program)
predict = fc_layer(
input=hidden2, size=10, act='softmax', program=program)
cost = cross_entropy(input=predict, label=label, program=program)
avg_cost = mean(x=cost, program=program)
self.assertIsNotNone(avg_cost)
# print str(program)
def test_simple_conv2d(self):
pd = core.ProgramDesc.__create_program_desc__()
program = Program(desc=pd)
images = data_layer(
name='pixel', shape=[3, 48, 48], data_type='int32', program=program)
conv2d_layer(
input=images, num_filters=3, filter_size=[4, 4], program=program)
# print str(program)
def test_simple_conv2d(self):
pd = core.ProgramDesc.__create_program_desc__()
program = Program(desc=pd)
images = data_layer(
name='pixel', shape=[3, 48, 48], data_type='int32', program=program)
conv2d_layer(
input=images, num_filters=3, filter_size=[4, 4], program=program)
print str(program)
if __name__ == '__main__':
unittest.main()