You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/analysis_predictor.h

183 lines
6.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/string/printf.h"
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
namespace paddle {
using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
using framework::NaiveExecutor;
/** \brief This predictor is based on the original native predictor with IR and
* Analysis support.
*
* It will optimize IR and Parameters in the runtime.
*
* TODO(Superjomn) Replace the Navive predictor?
*/
class AnalysisPredictor : public PaddlePredictor {
public:
explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
predictor_id_ = inference::GetUniqueId();
}
~AnalysisPredictor();
bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
bool Run(const std::vector<PaddleTensor> &inputs,
std::vector<PaddleTensor> *output_data,
int batch_size = -1) override;
std::vector<std::string> GetInputNames();
std::vector<std::string> GetOutputNames();
std::unique_ptr<ZeroCopyTensor> GetInputTensor(
const std::string &name) override;
std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
const std::string &name) override;
bool ZeroCopyRun() override;
void CreateFeedFetchVar(framework::Scope *scope);
void PrepareFeedFetch();
void PrepareArgument();
void OptimizeInferenceProgram();
Argument &analysis_argument() { return argument_; }
std::unique_ptr<PaddlePredictor> Clone() override;
framework::Scope *scope() { return scope_.get(); }
framework::ProgramDesc &program() { return *inference_program_; }
std::string GetSerializedProgram() const override;
bool MkldnnQuantize();
// save program to model
// save parameters to params
void SaveOptimModel(const std::string &dir);
protected:
// For memory optimization.
bool need_collect_var_shapes_for_memory_optim();
void CollectVarShapes();
void SerializeBatchVarShapes(const std::string &path);
bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
bool CreateExecutor();
bool PrepareExecutor();
bool LoadProgramDesc();
bool LoadParameters();
bool SetFeed(const std::vector<PaddleTensor> &input_datas,
framework::Scope *scope);
bool GetFetch(std::vector<PaddleTensor> *output_data,
framework::Scope *scope);
template <typename T>
void GetFetchOne(const framework::LoDTensor &fetchs,
PaddleTensor *output_data);
#if PADDLE_WITH_TENSORRT
// When we use Paddle-TRT INT8 engine, we need to generate calibration table
// data first,
// the calibration table contains the range for each op's input and output,
// this whole process can be divided into several steps:
//
// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
// histogram for each
// tensor of the distribution of activation values.
// 2. Builds a calibration table from the histograms.
//
// After step 2, we need to store the calibration table on disk
bool SaveTrtCalibToDisk();
#endif
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
FRIEND_TEST(AnalysisPredictor, analysis_off);
FRIEND_TEST(AnalysisPredictor, analysis_on);
FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif
private:
AnalysisConfig config_;
Argument argument_;
std::unique_ptr<NaiveExecutor> executor_;
platform::Place place_;
std::shared_ptr<framework::Scope> scope_;
framework::Scope *sub_scope_{nullptr};
std::shared_ptr<framework::ProgramDesc> inference_program_;
std::vector<framework::OpDesc *> feeds_;
std::map<std::string, size_t> feed_names_;
// Sorted according to the idx.
std::map<size_t, std::string> idx2feeds_;
std::vector<framework::OpDesc *> fetches_;
std::map<size_t, std::string> idx2fetches_;
#if PADDLE_WITH_MKLDNN
// Helper class to perform quantization
class MkldnnQuantizer;
MkldnnQuantizer *mkldnn_quantizer_{nullptr};
#if PADDLE_WITH_TESTING
friend class MkldnnQuantizerTest;
#endif
#endif
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
// concurrency problems, wrong results and memory leak, so cache them.
std::vector<framework::LoDTensor> feed_tensors_;
details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
// A mutex help to make Clone thread safe.
std::mutex clone_mutex_;
// For memory optimization.
const size_t max_shape_collect_count_{1000};
int need_collect_var_shapes_{-1}; // -1 for default, 0 for false, 1 for true.
std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
int predictor_id_;
private:
// Some status here that help to determine the status inside the predictor.
bool status_program_optimized_{false};
bool status_is_cloned_{false};
bool status_use_gpu_{false};
bool status_ir_optim_enabled_{false};
};
} // namespace paddle