You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/paddle_api.h

358 lines
10 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/*! \file paddle_api.h
*/
/*! \mainpage Paddle Inference APIs
* \section intro_sec Introduction
* The Paddle inference library aims to offer an high performance inference SDK
* for Paddle users.
*/
#include <cassert>
#include <memory>
#include <string>
#include <vector>
/*! \namespace paddle
*/
namespace paddle {
/** paddle data type.
*/
enum PaddleDType {
FLOAT32,
INT64,
INT32,
// TODO(Superjomn) support more data types if needed.
};
/**
* \brief Memory manager for `PaddleTensor`.
*
* The PaddleBuf holds a buffer for data input or output. The memory can be
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
* should be reused for better performance.
*
* For user allocated memory, the following API can be used:
* - PaddleBuf(void* data, size_t length) to set an external memory by
* specifying the memory address and length.
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
*memory.
* ATTENTION, for user allocated memory, deallocation should be done by users
*externally after the program finished. The PaddleBuf won't do any allocation
*or deallocation.
*
* To have the PaddleBuf allocate and manage the memory:
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
* if the allocated memory is larger than `length`, nothing will done.
*
* Usage:
*
* Let PaddleBuf manage the memory internally.
* \code{cpp}
* const int num_elements = 128;
* PaddleBuf buf(num_elements * sizeof(float));
* \endcode
*
* Or
* \code{cpp}
* PaddleBuf buf;
* buf.Resize(num_elements * sizeof(float));
* \endcode
* Works the exactly the same.
*
* One can also make the `PaddleBuf` use the external memory.
* \code{cpp}
* PaddleBuf buf;
* void* external_memory = new float[num_elements];
* buf.Reset(external_memory, num_elements*sizeof(float));
* ...
* delete[] external_memory; // manage the memory lifetime outside.
* \endcode
*/
class PaddleBuf {
public:
/** PaddleBuf allocate memory internally, and manage it.
*/
explicit PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
/** Set external memory, the PaddleBuf won't manage it.
*/
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
/** Copy only available when memory is managed externally.
*/
explicit PaddleBuf(const PaddleBuf&);
/** Resize the memory.
*/
void Resize(size_t length);
/** Reset to external memory, with address and length set.
*/
void Reset(void* data, size_t length);
/** Tell whether the buffer is empty.
*/
bool empty() const { return length_ == 0; }
/** Get the data's memory address.
*/
void* data() const { return data_; }
/** Get the memory length.
*/
size_t length() const { return length_; }
~PaddleBuf() { Free(); }
PaddleBuf& operator=(const PaddleBuf&);
PaddleBuf& operator=(PaddleBuf&&);
PaddleBuf() = default;
PaddleBuf(PaddleBuf&& other);
private:
void Free();
void* data_{nullptr}; // pointer to the data memory.
size_t length_{0}; // number of memory bytes.
bool memory_owned_{true};
};
/** Basic input and output data structure for PaddlePredictor.
*/
struct PaddleTensor {
PaddleTensor() = default;
std::string name; // variable name.
std::vector<int> shape;
PaddleBuf data; // blob of data.
PaddleDType dtype;
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
};
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
/** Tensor without copy, currently only supports `AnalysisPredictor`.
*/
class ZeroCopyTensor {
public:
void Reshape(const std::vector<int>& shape);
/** Get the memory in CPU or GPU with specific data type, should Reshape first
* to tell the data size.
* Once can directly call this data to feed the data.
* This is for write the input tensor.
*/
template <typename T>
T* mutable_data(PaddlePlace place);
/** Get the memory directly, will return the place and element size by
* pointer.
* This is for reading the output tensor.
*/
template <typename T>
T* data(PaddlePlace* place, int* size) const;
template <typename T>
void copy_from_cpu(const T* data);
template <typename T>
void copy_to_cpu(T* data);
std::vector<int> shape() const;
void SetLoD(const std::vector<std::vector<size_t>>& x);
std::vector<std::vector<size_t>> lod() const;
const std::string& name() const { return name_; }
void SetPlace(PaddlePlace place, int device = -1) {
place_ = place;
device_ = device;
}
PaddleDType type() const;
protected:
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
void SetName(const std::string& name) { name_ = name; }
void* FindTensor() const;
private:
std::string name_;
bool input_or_output_;
friend class AnalysisPredictor;
void* scope_{nullptr};
// The corresponding tensor pointer inside Paddle workspace is cached for
// performance.
mutable void* tensor_{nullptr};
PaddlePlace place_;
PaddleDType dtype_;
int device_;
};
/** A simple Inference API for Paddle.
*/
class PaddlePredictor {
public:
struct Config;
PaddlePredictor() = default;
PaddlePredictor(const PaddlePredictor&) = delete;
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
/** Predict an record.
* The caller should be responsible for allocating and releasing the memory of
* `inputs`. `inputs` should be available until Run returns. Caller should be
* responsible for the output tensor's buffer, either allocated or passed from
* outside.
*/
virtual bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data,
int batch_size = -1) = 0;
/** \brief Get input names of the model
*/
virtual std::vector<std::string> GetInputNames() { return {}; }
/** \brief Get output names of the model
*/
virtual std::vector<std::string> GetOutputNames() { return {}; }
/** \brief Get a mutable tensor directly.
*
* NOTE Only works in AnalysisPredictor.
*
* One can also use this to modify any temporary variable related tensors in
* the predictor.
*
*/
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
const std::string& name) {
return nullptr;
}
/**
* \brief Get an immutable tensor without copy.
*
* NOTE Only works in AnalysisPredictor.
* One can use this API to get any temporary tensors in the predictor and
* read it.
*/
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
const std::string& name) {
return nullptr;
}
/**
* \brief Run the predictor with zero-copied inputs and outputs.
*
* NOTE Only works in AnalysisPredictor.
*
* This will save the IO copy for transfering inputs and outputs to predictor
* workspace and get some performance improvement.
* To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)`
* and then use the `GetInputTensor` and `GetOutputTensor` to directly write
* or read the input/output tensors.
*/
virtual bool ZeroCopyRun() { return false; }
/** Clone a predictor that share the model weights, the Cloned predictor
* should be thread-safe.
*/
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
/** Destroy the Predictor.
*/
virtual ~PaddlePredictor() = default;
/** \brief Get the serialized model program that executes in inference phase.
* Its data type is ProgramDesc, which is a protobuf message.
*/
virtual std::string GetSerializedProgram() const {
assert(false); // Force raise error.
return "NotImplemented";
}
/** The common configs for all the predictors.
*/
struct Config {
std::string model_dir; /*!< path to the model directory. */
};
};
struct NativeConfig : public PaddlePredictor::Config {
// GPU related fields.
bool use_gpu{false};
int device{0};
float fraction_of_gpu_memory{
-1.f}; /*!< Change to a float in (0,1] if needed. */
// Specify the exact path of program and parameter files.
std::string prog_file;
std::string param_file;
/** Specify the variable's name of each input if input tensors don't follow
* the
* `feeds` and `fetches` of the phase `save_inference_model`.
*/
bool specify_input_name{false};
/** Set and get the number of cpu math library threads.
*/
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
protected:
// number of cpu math library (such as MKL, OpenBlas) threads for each
// instance.
int cpu_math_library_num_threads_{1};
};
/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
* config);
*
* \brief A factory to help create different predictors.
*
* Usage:
*
* \code{.cpp}
* NativeConfig config;
* ... // change the configs.
* auto native_predictor = CreatePaddlePredictor(config);
* \endcode
*
* FOR EXTENSION DEVELOPER:
* Different predictors are designated by config type. Similar configs can be
* merged, but there shouldn't be a huge config containing different fields for
* more than one kind of predictors.
*/
template <typename ConfigT>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
/** NOTE The following APIs are too trivial, we will discard it in the following
* versions.
*/
enum class PaddleEngineKind {
kNative = 0, /*!< Use the native Fluid facility. */
kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */
kAnalysis, /*!< More optimization. */
kAnakin /*!< Use Anakin for inference, not mature yet. */
};
template <typename ConfigT, PaddleEngineKind engine>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
int PaddleDtypeSize(PaddleDType dtype);
std::string get_version();
} // namespace paddle