You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
10 KiB
358 lines
10 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#pragma once
|
|
|
|
/*! \file paddle_api.h
|
|
*/
|
|
|
|
/*! \mainpage Paddle Inference APIs
|
|
* \section intro_sec Introduction
|
|
* The Paddle inference library aims to offer an high performance inference SDK
|
|
* for Paddle users.
|
|
*/
|
|
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
/*! \namespace paddle
|
|
*/
|
|
namespace paddle {
|
|
|
|
/** paddle data type.
|
|
*/
|
|
enum PaddleDType {
|
|
FLOAT32,
|
|
INT64,
|
|
INT32,
|
|
// TODO(Superjomn) support more data types if needed.
|
|
};
|
|
|
|
/**
|
|
* \brief Memory manager for `PaddleTensor`.
|
|
*
|
|
* The PaddleBuf holds a buffer for data input or output. The memory can be
|
|
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
|
|
* should be reused for better performance.
|
|
*
|
|
* For user allocated memory, the following API can be used:
|
|
* - PaddleBuf(void* data, size_t length) to set an external memory by
|
|
* specifying the memory address and length.
|
|
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
|
|
*memory.
|
|
* ATTENTION, for user allocated memory, deallocation should be done by users
|
|
*externally after the program finished. The PaddleBuf won't do any allocation
|
|
*or deallocation.
|
|
*
|
|
* To have the PaddleBuf allocate and manage the memory:
|
|
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
|
|
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
|
|
* if the allocated memory is larger than `length`, nothing will done.
|
|
*
|
|
* Usage:
|
|
*
|
|
* Let PaddleBuf manage the memory internally.
|
|
* \code{cpp}
|
|
* const int num_elements = 128;
|
|
* PaddleBuf buf(num_elements * sizeof(float));
|
|
* \endcode
|
|
*
|
|
* Or
|
|
* \code{cpp}
|
|
* PaddleBuf buf;
|
|
* buf.Resize(num_elements * sizeof(float));
|
|
* \endcode
|
|
* Works the exactly the same.
|
|
*
|
|
* One can also make the `PaddleBuf` use the external memory.
|
|
* \code{cpp}
|
|
* PaddleBuf buf;
|
|
* void* external_memory = new float[num_elements];
|
|
* buf.Reset(external_memory, num_elements*sizeof(float));
|
|
* ...
|
|
* delete[] external_memory; // manage the memory lifetime outside.
|
|
* \endcode
|
|
*/
|
|
class PaddleBuf {
|
|
public:
|
|
/** PaddleBuf allocate memory internally, and manage it.
|
|
*/
|
|
explicit PaddleBuf(size_t length)
|
|
: data_(new char[length]), length_(length), memory_owned_(true) {}
|
|
/** Set external memory, the PaddleBuf won't manage it.
|
|
*/
|
|
PaddleBuf(void* data, size_t length)
|
|
: data_(data), length_(length), memory_owned_{false} {}
|
|
/** Copy only available when memory is managed externally.
|
|
*/
|
|
explicit PaddleBuf(const PaddleBuf&);
|
|
|
|
/** Resize the memory.
|
|
*/
|
|
void Resize(size_t length);
|
|
/** Reset to external memory, with address and length set.
|
|
*/
|
|
void Reset(void* data, size_t length);
|
|
/** Tell whether the buffer is empty.
|
|
*/
|
|
bool empty() const { return length_ == 0; }
|
|
/** Get the data's memory address.
|
|
*/
|
|
void* data() const { return data_; }
|
|
/** Get the memory length.
|
|
*/
|
|
size_t length() const { return length_; }
|
|
|
|
~PaddleBuf() { Free(); }
|
|
PaddleBuf& operator=(const PaddleBuf&);
|
|
PaddleBuf& operator=(PaddleBuf&&);
|
|
PaddleBuf() = default;
|
|
PaddleBuf(PaddleBuf&& other);
|
|
|
|
private:
|
|
void Free();
|
|
void* data_{nullptr}; // pointer to the data memory.
|
|
size_t length_{0}; // number of memory bytes.
|
|
bool memory_owned_{true};
|
|
};
|
|
|
|
/** Basic input and output data structure for PaddlePredictor.
|
|
*/
|
|
struct PaddleTensor {
|
|
PaddleTensor() = default;
|
|
std::string name; // variable name.
|
|
std::vector<int> shape;
|
|
PaddleBuf data; // blob of data.
|
|
PaddleDType dtype;
|
|
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
|
|
};
|
|
|
|
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
|
|
|
|
/** Tensor without copy, currently only supports `AnalysisPredictor`.
|
|
*/
|
|
class ZeroCopyTensor {
|
|
public:
|
|
void Reshape(const std::vector<int>& shape);
|
|
|
|
/** Get the memory in CPU or GPU with specific data type, should Reshape first
|
|
* to tell the data size.
|
|
* Once can directly call this data to feed the data.
|
|
* This is for write the input tensor.
|
|
*/
|
|
template <typename T>
|
|
T* mutable_data(PaddlePlace place);
|
|
/** Get the memory directly, will return the place and element size by
|
|
* pointer.
|
|
* This is for reading the output tensor.
|
|
*/
|
|
template <typename T>
|
|
T* data(PaddlePlace* place, int* size) const;
|
|
|
|
template <typename T>
|
|
void copy_from_cpu(const T* data);
|
|
|
|
template <typename T>
|
|
void copy_to_cpu(T* data);
|
|
|
|
std::vector<int> shape() const;
|
|
|
|
void SetLoD(const std::vector<std::vector<size_t>>& x);
|
|
std::vector<std::vector<size_t>> lod() const;
|
|
const std::string& name() const { return name_; }
|
|
void SetPlace(PaddlePlace place, int device = -1) {
|
|
place_ = place;
|
|
device_ = device;
|
|
}
|
|
|
|
PaddleDType type() const;
|
|
|
|
protected:
|
|
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
|
|
void SetName(const std::string& name) { name_ = name; }
|
|
void* FindTensor() const;
|
|
|
|
private:
|
|
std::string name_;
|
|
bool input_or_output_;
|
|
friend class AnalysisPredictor;
|
|
void* scope_{nullptr};
|
|
// The corresponding tensor pointer inside Paddle workspace is cached for
|
|
// performance.
|
|
mutable void* tensor_{nullptr};
|
|
PaddlePlace place_;
|
|
PaddleDType dtype_;
|
|
int device_;
|
|
};
|
|
|
|
/** A simple Inference API for Paddle.
|
|
*/
|
|
class PaddlePredictor {
|
|
public:
|
|
struct Config;
|
|
PaddlePredictor() = default;
|
|
PaddlePredictor(const PaddlePredictor&) = delete;
|
|
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
|
|
|
|
/** Predict an record.
|
|
* The caller should be responsible for allocating and releasing the memory of
|
|
* `inputs`. `inputs` should be available until Run returns. Caller should be
|
|
* responsible for the output tensor's buffer, either allocated or passed from
|
|
* outside.
|
|
*/
|
|
virtual bool Run(const std::vector<PaddleTensor>& inputs,
|
|
std::vector<PaddleTensor>* output_data,
|
|
int batch_size = -1) = 0;
|
|
|
|
/** \brief Get input names of the model
|
|
*/
|
|
virtual std::vector<std::string> GetInputNames() { return {}; }
|
|
|
|
/** \brief Get output names of the model
|
|
*/
|
|
virtual std::vector<std::string> GetOutputNames() { return {}; }
|
|
|
|
/** \brief Get a mutable tensor directly.
|
|
*
|
|
* NOTE Only works in AnalysisPredictor.
|
|
*
|
|
* One can also use this to modify any temporary variable related tensors in
|
|
* the predictor.
|
|
*
|
|
*/
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
|
|
const std::string& name) {
|
|
return nullptr;
|
|
}
|
|
/**
|
|
* \brief Get an immutable tensor without copy.
|
|
*
|
|
* NOTE Only works in AnalysisPredictor.
|
|
* One can use this API to get any temporary tensors in the predictor and
|
|
* read it.
|
|
*/
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
|
|
const std::string& name) {
|
|
return nullptr;
|
|
}
|
|
/**
|
|
* \brief Run the predictor with zero-copied inputs and outputs.
|
|
*
|
|
* NOTE Only works in AnalysisPredictor.
|
|
*
|
|
* This will save the IO copy for transfering inputs and outputs to predictor
|
|
* workspace and get some performance improvement.
|
|
* To use it, one should call the `AnalysisConfig.SwitchUseFeedFetchOp(true)`
|
|
* and then use the `GetInputTensor` and `GetOutputTensor` to directly write
|
|
* or read the input/output tensors.
|
|
*/
|
|
virtual bool ZeroCopyRun() { return false; }
|
|
|
|
/** Clone a predictor that share the model weights, the Cloned predictor
|
|
* should be thread-safe.
|
|
*/
|
|
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
|
|
|
|
/** Destroy the Predictor.
|
|
*/
|
|
virtual ~PaddlePredictor() = default;
|
|
|
|
/** \brief Get the serialized model program that executes in inference phase.
|
|
* Its data type is ProgramDesc, which is a protobuf message.
|
|
*/
|
|
virtual std::string GetSerializedProgram() const {
|
|
assert(false); // Force raise error.
|
|
return "NotImplemented";
|
|
}
|
|
|
|
/** The common configs for all the predictors.
|
|
*/
|
|
struct Config {
|
|
std::string model_dir; /*!< path to the model directory. */
|
|
};
|
|
};
|
|
|
|
struct NativeConfig : public PaddlePredictor::Config {
|
|
// GPU related fields.
|
|
bool use_gpu{false};
|
|
int device{0};
|
|
float fraction_of_gpu_memory{
|
|
-1.f}; /*!< Change to a float in (0,1] if needed. */
|
|
|
|
// Specify the exact path of program and parameter files.
|
|
std::string prog_file;
|
|
std::string param_file;
|
|
|
|
/** Specify the variable's name of each input if input tensors don't follow
|
|
* the
|
|
* `feeds` and `fetches` of the phase `save_inference_model`.
|
|
*/
|
|
bool specify_input_name{false};
|
|
|
|
/** Set and get the number of cpu math library threads.
|
|
*/
|
|
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
|
|
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
|
|
}
|
|
int cpu_math_library_num_threads() const {
|
|
return cpu_math_library_num_threads_;
|
|
}
|
|
|
|
protected:
|
|
// number of cpu math library (such as MKL, OpenBlas) threads for each
|
|
// instance.
|
|
int cpu_math_library_num_threads_{1};
|
|
};
|
|
|
|
/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
|
|
* config);
|
|
*
|
|
* \brief A factory to help create different predictors.
|
|
*
|
|
* Usage:
|
|
*
|
|
* \code{.cpp}
|
|
* NativeConfig config;
|
|
* ... // change the configs.
|
|
* auto native_predictor = CreatePaddlePredictor(config);
|
|
* \endcode
|
|
*
|
|
* FOR EXTENSION DEVELOPER:
|
|
* Different predictors are designated by config type. Similar configs can be
|
|
* merged, but there shouldn't be a huge config containing different fields for
|
|
* more than one kind of predictors.
|
|
*/
|
|
template <typename ConfigT>
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
/** NOTE The following APIs are too trivial, we will discard it in the following
|
|
* versions.
|
|
*/
|
|
enum class PaddleEngineKind {
|
|
kNative = 0, /*!< Use the native Fluid facility. */
|
|
kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */
|
|
kAnalysis, /*!< More optimization. */
|
|
kAnakin /*!< Use Anakin for inference, not mature yet. */
|
|
};
|
|
|
|
template <typename ConfigT, PaddleEngineKind engine>
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
int PaddleDtypeSize(PaddleDType dtype);
|
|
|
|
std::string get_version();
|
|
|
|
} // namespace paddle
|