You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							108 lines
						
					
					
						
							4.4 KiB
						
					
					
				
			
		
		
	
	
							108 lines
						
					
					
						
							4.4 KiB
						
					
					
				/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 | 
						|
 | 
						|
   Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
   you may not use this file except in compliance with the License.
 | 
						|
   You may obtain a copy of the License at
 | 
						|
 | 
						|
   http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 | 
						|
   Unless required by applicable law or agreed to in writing, software
 | 
						|
   distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
   See the License for the specific language governing permissions and
 | 
						|
   limitations under the License. */
 | 
						|
 | 
						|
#pragma once
 | 
						|
#include "paddle/framework/eigen.h"
 | 
						|
#include "paddle/framework/op_registry.h"
 | 
						|
 | 
						|
namespace paddle {
 | 
						|
namespace operators {
 | 
						|
 | 
						|
using Tensor = framework::Tensor;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
 | 
						|
template <typename T, int MajorType = Eigen::RowMajor,
 | 
						|
          typename IndexType = Eigen::DenseIndex>
 | 
						|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
 | 
						|
 | 
						|
template <typename Place, typename T>
 | 
						|
class CosSimKernel : public framework::OpKernel {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* input_x = context.Input<Tensor>("X");
 | 
						|
    auto* input_y = context.Input<Tensor>("Y");
 | 
						|
    auto* output_z = context.Output<Tensor>("Out");
 | 
						|
    auto* output_x_norm = context.Output<Tensor>("XNorm");
 | 
						|
    auto* output_y_norm = context.Output<Tensor>("YNorm");
 | 
						|
 | 
						|
    output_z->mutable_data<T>(context.GetPlace());
 | 
						|
    output_x_norm->mutable_data<T>(context.GetPlace());
 | 
						|
    output_y_norm->mutable_data<T>(context.GetPlace());
 | 
						|
 | 
						|
    auto dims = input_x->dims();
 | 
						|
    int64_t size = input_x->numel();
 | 
						|
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
 | 
						|
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
 | 
						|
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
 | 
						|
    auto z = EigenVector<T>::Flatten(*output_z);
 | 
						|
    auto x_norm = EigenVector<T>::Flatten(*output_x_norm);
 | 
						|
    auto y_norm = EigenVector<T>::Flatten(*output_y_norm);
 | 
						|
 | 
						|
    auto place = context.GetEigenDevice<Place>();
 | 
						|
    auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
 | 
						|
    x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
 | 
						|
    y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
 | 
						|
    z.device(place) = xy / x_norm / y_norm;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <typename Place, typename T>
 | 
						|
class CosSimGradKernel : public framework::OpKernel {
 | 
						|
 public:
 | 
						|
  void Compute(const framework::ExecutionContext& context) const override {
 | 
						|
    auto* input_x = context.Input<Tensor>("X");
 | 
						|
    auto* input_y = context.Input<Tensor>("Y");
 | 
						|
    auto* input_z = context.Input<Tensor>("Out");
 | 
						|
    auto* input_x_norm = context.Input<Tensor>("XNorm");
 | 
						|
    auto* input_y_norm = context.Input<Tensor>("YNorm");
 | 
						|
    auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
 | 
						|
    auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
 | 
						|
    auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
 | 
						|
 | 
						|
    auto dims = input_x->dims();
 | 
						|
    int64_t size = input_x->numel();
 | 
						|
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
 | 
						|
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
 | 
						|
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
 | 
						|
    auto z = EigenMatrix<T>::From(*input_z);
 | 
						|
    auto x_norm = EigenMatrix<T>::From(*input_x_norm);
 | 
						|
    auto y_norm = EigenMatrix<T>::From(*input_y_norm);
 | 
						|
    auto dz = EigenMatrix<T>::From(*input_grad_z);
 | 
						|
 | 
						|
    Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
 | 
						|
    auto z_bcast = z.broadcast(bcast);
 | 
						|
    auto dz_bcast = dz.broadcast(bcast);
 | 
						|
    auto place = context.GetEigenDevice<Place>();
 | 
						|
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
 | 
						|
    auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
 | 
						|
    auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
 | 
						|
    if (output_grad_x) {
 | 
						|
      output_grad_x->mutable_data<T>(context.GetPlace());
 | 
						|
      auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
 | 
						|
      dx.device(place) =
 | 
						|
          dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
 | 
						|
    }
 | 
						|
    if (output_grad_y) {
 | 
						|
      output_grad_y->mutable_data<T>(context.GetPlace());
 | 
						|
      auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
 | 
						|
      dy.device(place) =
 | 
						|
          dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace operators
 | 
						|
}  // namespace paddle
 |