You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv3d_transpose_op.py

267 lines
8.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
def conv3dtranspose_forward_naive(input_, filter_, attrs):
in_n, in_c, in_d, in_h, in_w = input_.shape
f_c, f_out_c, f_d, f_h, f_w = filter_.shape
groups = attrs['groups']
assert in_c == f_c
out_c = f_out_c * groups
sub_in_c = in_c / groups
stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
'dilations']
d_bolck_d = dilations[0] * (f_d - 1) + 1
d_bolck_h = dilations[1] * (f_h - 1) + 1
d_bolck_w = dilations[2] * (f_w - 1) + 1
out_d = (in_d - 1) * stride[0] + d_bolck_d
out_h = (in_h - 1) * stride[1] + d_bolck_h
out_w = (in_w - 1) * stride[2] + d_bolck_w
out = np.zeros((in_n, out_c, out_d, out_h, out_w))
for n in range(in_n):
for d in range(in_d):
for i in range(in_h):
for j in range(in_w):
for g in range(groups):
input_masked = input_[n, g * sub_in_c:(g + 1
) * sub_in_c, d,
i, j] # (c)
input_masked = np.reshape(input_masked,
(sub_in_c, 1, 1, 1))
input_masked = np.tile(input_masked, (1, f_d, f_h, f_w))
for k in range(f_out_c):
tmp_out = np.sum(input_masked * filter_[
g * sub_in_c:(g + 1) * sub_in_c, k, :, :, :],
axis=0)
d1, d2 = d * stride[0], d * stride[0] + d_bolck_d
i1, i2 = i * stride[1], i * stride[1] + d_bolck_h
j1, j2 = j * stride[2], j * stride[2] + d_bolck_w
out[n, g * f_out_c + k, d1:d2:dilations[0], i1:i2:
dilations[1], j1:j2:dilations[2]] += tmp_out
out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w -
pad[2]]
return out
class TestConv3dTransposeOp(OpTest):
def setUp(self):
# init as conv transpose
self.use_cudnn = False
self.init_op_type()
self.init_test_case()
input_ = np.random.random(self.input_size).astype("float32")
filter_ = np.random.random(self.filter_size).astype("float32")
self.inputs = {'Input': input_, 'Filter': filter_}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'dilations': self.dilations,
'groups': self.groups,
'use_cudnn': self.use_cudnn,
'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter
}
output = conv3dtranspose_forward_naive(input_, filter_,
self.attrs).astype("float32")
self.outputs = {'Output': output}
def test_check_output(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_output_with_place(place, atol=1e-5)
else:
self.check_output()
def test_check_grad(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place,
set(['Input', 'Filter']),
'Output',
max_relative_error=0.03)
else:
self.check_grad(
set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
def test_check_grad_no_filter(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Input'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Filter']))
else:
self.check_grad(
['Input'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
place, ['Filter'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Input']))
else:
self.check_grad(
['Filter'],
'Output',
max_relative_error=0.03,
no_grad_set=set(['Input']))
def init_test_case(self):
self.pad = [0, 0, 0]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.op_type = "conv3d_transpose"
class TestWithPad(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class TestWithGroups(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3, 3]
class TestWithStride(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
class TestWithDilation(TestConv3dTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [2, 2, 2]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
# ------------ test_cudnn ------------
class TestCUDNN(TestConv3dTransposeOp):
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
class TestCUDNNWithPad(TestWithPad):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
class TestCUDNNWithStride(TestWithStride):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [2, 2, 2]
self.dilations = [1, 1, 1]
self.groups = 1
self.input_size = [2, 3, 5, 5, 5] # NCDHW
f_c = self.input_size[1]
self.filter_size = [f_c, 6, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
class TestCUDNNWithGroups(TestWithGroups):
def init_test_case(self):
self.pad = [1, 1, 1]
self.stride = [1, 1, 1]
self.dilations = [1, 1, 1]
self.groups = 2
self.input_size = [2, 4, 5, 5, 5] # NCHW
f_c = self.input_size[1]
self.filter_size = [f_c, 3, 3, 3, 3]
def init_op_type(self):
self.use_cudnn = True
self.op_type = "conv3d_transpose"
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
# def init_test_case(self):
# self.pad = [1, 1, 1]
# self.stride = [2, 2, 2]
# self.dilations = [2, 2, 2]
# self.input_size = [2, 3, 5, 5, 5] # NCDHW
# f_c = self.input_size[1]
# self.filter_size = [f_c, 6, 3, 3, 3]
#
# def init_op_type(self):
# self.op_type = "conv3d_transpose"
if __name__ == '__main__':
unittest.main()