You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.4 KiB
67 lines
2.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
|
|
|
|
from transpiler_test import TranspilerTest
|
|
|
|
|
|
class TestDistTranspiler(TranspilerTest):
|
|
def setUp(self):
|
|
self.current_pserver_ep = "127.0.0.1:6174"
|
|
|
|
def test_transpiler(self):
|
|
trainer = self.get_trainer()
|
|
pserver, startup = self.get_pserver(self.current_pserver_ep)
|
|
self.assertEqual([op.type for op in trainer.global_block().ops],
|
|
self.get_expect_trainer_ops())
|
|
|
|
self.assertEqual(len(pserver.blocks), 3)
|
|
# block0: listen_and_serv
|
|
self.assertEqual([op.type for op in pserver.blocks[0].ops],
|
|
["listen_and_serv"])
|
|
# block2: optimize pass
|
|
self.assertEqual([op.type for op in pserver.blocks[1].ops],
|
|
["sum", "scale", "sgd"])
|
|
|
|
# confirm startup program
|
|
|
|
self.assertEqual([op.type for op in startup.global_block().ops], [
|
|
"fill_constant", "fill_constant", "uniform_random", "uniform_random"
|
|
])
|
|
|
|
# the variable #fc_w will be split into two blocks
|
|
fc_w_var = startup.global_block().var("fc_w.block1")
|
|
self.assertEqual(fc_w_var.shape, (500, 1000))
|
|
|
|
def get_expect_trainer_ops(self):
|
|
trainer = fluid.Program()
|
|
|
|
with fluid.program_guard(trainer):
|
|
optimize_ops, params_grads = self.net_conf()
|
|
|
|
delete_ops(trainer.global_block(), optimize_ops)
|
|
ops = [op.type for op in trainer.global_block().ops] + [
|
|
"split_byref", "send", "send_barrier", "recv", "recv",
|
|
"fetch_barrier", "concat"
|
|
]
|
|
ops.insert(ops.index("elementwise_add_grad") + 1, "send")
|
|
return ops
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|