You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
5.5 KiB
173 lines
5.5 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License. */
|
|
|
|
#include <cstring> // for memcpy
|
|
#include <random>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "gflags/gflags.h"
|
|
#include "glog/logging.h"
|
|
#include "gtest/gtest.h"
|
|
#include "paddle/fluid/operators/jit/kernels.h"
|
|
#include "paddle/fluid/platform/place.h"
|
|
|
|
template <typename T>
|
|
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
|
|
const T upper = static_cast<T>(20.f)) {
|
|
static unsigned int seed = 100;
|
|
std::mt19937 rng(seed++);
|
|
std::uniform_real_distribution<double> uniform_dist(0, 1);
|
|
for (int i = 0; i < n; ++i) {
|
|
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void ExpectEQ(const T* target, const T* refer, int n) {
|
|
if (std::is_floating_point<T>::value) {
|
|
for (int i = 0; i < n; ++i) {
|
|
EXPECT_NEAR(target[i], refer[i], 1e-3);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < n; ++i) {
|
|
EXPECT_EQ(target[i], refer[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<int> TestSizes() {
|
|
std::vector<int> s;
|
|
for (int i = 1; i < 32; ++i) {
|
|
s.push_back(i);
|
|
}
|
|
// test some large size
|
|
s.push_back(100);
|
|
s.push_back(1000);
|
|
s.push_back(2000);
|
|
return s;
|
|
}
|
|
|
|
template <typename T, typename KernelTuples>
|
|
void TestTartgetFunc(const typename KernelTuples::func_type tgt,
|
|
const std::vector<T>& x, const std::vector<T>& y,
|
|
const std::vector<T>& zref) {
|
|
EXPECT_TRUE(tgt != nullptr);
|
|
EXPECT_EQ(zref.size(), x.size());
|
|
EXPECT_EQ(zref.size(), y.size());
|
|
const T* x_data = x.data();
|
|
const T* y_data = y.data();
|
|
const T* zref_data = zref.data();
|
|
const int d = zref.size();
|
|
|
|
std::vector<T> ztgt(d);
|
|
T* ztgt_data = ztgt.data();
|
|
// test normal
|
|
tgt(x_data, y_data, ztgt_data, d);
|
|
ExpectEQ<T>(ztgt_data, zref_data, d);
|
|
// test inplace x
|
|
std::copy(x.begin(), x.end(), ztgt.begin());
|
|
tgt(ztgt_data, y_data, ztgt_data, d);
|
|
ExpectEQ<T>(ztgt_data, zref_data, d);
|
|
// test inplace y
|
|
std::copy(y.begin(), y.end(), ztgt.begin());
|
|
tgt(x_data, ztgt_data, ztgt_data, d);
|
|
ExpectEQ<T>(ztgt_data, zref_data, d);
|
|
}
|
|
|
|
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
|
|
void TestXYZNKernel() {
|
|
namespace jit = paddle::operators::jit;
|
|
for (int d : TestSizes()) {
|
|
VLOG(10) << "===== Test JITKernel " << jit::to_string(KT)
|
|
<< ", size: " << d;
|
|
auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
|
|
EXPECT_TRUE(ref != nullptr);
|
|
|
|
std::vector<T> x(d), y(d), zref(d);
|
|
RandomVec<T>(d, x.data());
|
|
RandomVec<T>(d, y.data());
|
|
|
|
std::vector<T> xinp(d), yinp(d); // inplace test
|
|
std::copy(x.begin(), x.end(), xinp.begin());
|
|
std::copy(y.begin(), y.end(), yinp.begin());
|
|
|
|
const T* x_data = x.data();
|
|
const T* y_data = y.data();
|
|
T* zref_data = zref.data();
|
|
T* xinp_data = xinp.data();
|
|
T* yinp_data = yinp.data();
|
|
|
|
// test refer code inplace
|
|
ref(x_data, y_data, zref_data, d);
|
|
ref(x_data, yinp_data, yinp_data, d);
|
|
ref(xinp_data, y_data, xinp_data, d);
|
|
ExpectEQ<T>(xinp_data, zref_data, d);
|
|
ExpectEQ<T>(yinp_data, zref_data, d);
|
|
|
|
// test jitcode
|
|
auto jitcode = jit::GetJitCode<KT, jit::XYZNTuples<T>, PlaceType>(d);
|
|
if (jitcode) {
|
|
VLOG(10) << "Test Jitcode Kernel, size: " << d;
|
|
TestTartgetFunc<T, jit::XYZNTuples<T>>(jitcode, x, y, zref);
|
|
}
|
|
|
|
// test all impls in more
|
|
jit::KernelKey kkey(KT, PlaceType());
|
|
auto& pool = jit::KernelPool().Instance().AllKernels();
|
|
auto iter = pool.find(kkey);
|
|
if (iter != pool.end()) {
|
|
auto& impls = iter->second;
|
|
for (auto& impl : impls) {
|
|
auto i = dynamic_cast<const jit::KernelImpl<jit::XYZNTuples<T>>*>(
|
|
impl.get());
|
|
if (i && i->UseMe(d)) {
|
|
auto more = i->GetFunc();
|
|
VLOG(10) << "Test More Kernel, size: " << d;
|
|
TestTartgetFunc<T, jit::XYZNTuples<T>>(more, x, y, zref);
|
|
}
|
|
}
|
|
}
|
|
// Test result from Get function
|
|
VLOG(10) << "Test Get function, size: " << d;
|
|
auto tgt = jit::Get<KT, jit::XYZNTuples<T>, PlaceType>(d);
|
|
TestTartgetFunc<T, jit::XYZNTuples<T>>(tgt, x, y, zref);
|
|
}
|
|
}
|
|
|
|
TEST(JITKernel, vmul) {
|
|
namespace jit = paddle::operators::jit;
|
|
TestXYZNKernel<jit::vmul, float, paddle::platform::CPUPlace>();
|
|
TestXYZNKernel<jit::vmul, double, paddle::platform::CPUPlace>();
|
|
}
|
|
|
|
TEST(JITKernel, vadd) {
|
|
namespace jit = paddle::operators::jit;
|
|
TestXYZNKernel<jit::vadd, float, paddle::platform::CPUPlace>();
|
|
TestXYZNKernel<jit::vadd, double, paddle::platform::CPUPlace>();
|
|
}
|
|
|
|
TEST(JITKernel, vaddrelu) {
|
|
namespace jit = paddle::operators::jit;
|
|
TestXYZNKernel<jit::vaddrelu, float, paddle::platform::CPUPlace>();
|
|
TestXYZNKernel<jit::vaddrelu, double, paddle::platform::CPUPlace>();
|
|
}
|
|
|
|
TEST(JITKernel, vsub) {
|
|
namespace jit = paddle::operators::jit;
|
|
TestXYZNKernel<jit::vsub, float, paddle::platform::CPUPlace>();
|
|
TestXYZNKernel<jit::vsub, double, paddle::platform::CPUPlace>();
|
|
}
|
|
|
|
TEST(JITKernel, pool) {}
|