You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/reducer.h

201 lines
6.0 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <map>
#include <memory>
#include <queue>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace platform {
class DeviceContext;
} // namespace platform
namespace imperative {
class ParallelContext;
class VarBase;
class VariableWrapper;
} // namespace imperative
} // namespace paddle
namespace paddle {
namespace imperative {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_XPU_BKCL)
template <typename T>
struct DivNRanksFunctor {
DivNRanksFunctor(int64_t nranks, T* output)
: nranks_(nranks), output_(output) {}
HOSTDEVICE void operator()(size_t idx) const {
output_[idx] /= static_cast<T>(nranks_);
}
int64_t nranks_;
T* output_;
};
template <typename Dex>
struct DivNRanksForAllReduce {
framework::Tensor* in_;
int64_t nranks_;
const platform::DeviceContext& ctx_;
DivNRanksForAllReduce(framework::Tensor* in, int64_t nranks,
const platform::DeviceContext& ctx)
: in_(in), nranks_(nranks), ctx_(ctx) {}
template <typename T>
void apply() const {
T* data = in_->mutable_data<T>(ctx_.GetPlace());
platform::ForRange<Dex> for_range(static_cast<const Dex&>(ctx_),
static_cast<size_t>(in_->numel()));
DivNRanksFunctor<T> functor(nranks_, data);
for_range(functor);
}
};
class Group {
public:
// Here, we use dense_contents_ & sparse_contents_ to
// achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work,
// conversely, dense_contents_ works. It is mutex relationship.
framework::Variable dense_contents_;
framework::Variable* sparse_contents_ = nullptr;
bool is_sparse_ = false;
// for concat kernel
std::vector<framework::Tensor> dense_tensors_;
std::vector<size_t> length_;
int64_t all_length_{0};
// Global indices of participating variables in the group
std::vector<size_t> variable_indices_;
// Number of params that haven't been ready. When it is 0, it means
// the group is ready.
size_t pending_ = -1;
// external message of group
framework::proto::VarType::Type dtype_;
// context is used to select the stream for concat
void ConcatTensors(const platform::DeviceContext& context);
// context is used to select the stream for split
void SplitTensors(const platform::DeviceContext& context);
// use it in CUDA
void DivNRanks(framework::Tensor* tensor, int64_t nranks,
const platform::DeviceContext& context);
void DivNRanks(const platform::DeviceContext& context, int64_t nranks);
friend std::ostream& operator<<(std::ostream&, const Group&);
};
struct VariableLocator {
// record the index in groups_
size_t group_index;
size_t inside_group_index;
};
class Reducer {
public:
explicit Reducer(
const std::vector<std::shared_ptr<imperative::VarBase>>& vars,
const std::vector<std::vector<size_t>>& group_indices,
const std::vector<bool>& is_sparse_gradient,
std::shared_ptr<imperative::ParallelContext> parallel_ctx,
const std::vector<size_t>& group_size_limits, bool find_unused_vars);
virtual ~Reducer() {}
void InitializeGroups(const std::vector<std::vector<size_t>>& group_indices);
void InitializeDenseGroups(const std::vector<size_t>& variable_indices_,
Group* p_group);
void PrepareDeps(const std::unordered_set<GradOpNode*>& init_nodes);
void PrepareForBackward(
const std::vector<std::shared_ptr<imperative::VarBase>>& outputs);
void AddDistHook(size_t var_index);
void MarkVarReady(const size_t var_index, const bool is_used_var);
void MarkGroupReady(size_t group_index);
void FinalizeBackward();
std::vector<std::vector<size_t>> RebuildGruops();
inline bool NeedRebuildGroup() { return !has_rebuilt_group_; }
private:
std::vector<std::shared_ptr<imperative::VarBase>> vars_;
std::vector<std::vector<size_t>> group_indices_;
std::vector<Group> groups_;
size_t next_group_ = 0;
platform::Place place_;
std::once_flag once_flag_;
std::vector<bool> is_sparse_gradient_;
std::shared_ptr<imperative::ParallelContext> parallel_ctx_;
std::vector<VariableLocator> variable_locators_;
int nrings_ = 1;
int64_t nranks_ = -1;
// Following variables are to help rebuild group
// TODO(shenliang03): Support rebuild in the future.
bool has_rebuilt_group_{true};
std::vector<std::shared_ptr<imperative::VarBase>> rebuild_vars_;
std::vector<int64_t> rebuild_var_indices_;
const std::vector<size_t> group_size_limits_;
// Following variables are to help unused vars
std::unordered_map<GradOpNode*, size_t> node_deps_;
std::unordered_map<VariableWrapper*, size_t> var_index_map_;
std::vector<size_t> unused_vars_;
bool has_marked_unused_vars_{false};
bool find_unused_vars_{false};
bool all_group_ready_{false};
};
std::vector<std::vector<size_t>> AssignGroupBySize(
const std::vector<std::shared_ptr<imperative::VarBase>>& tensors,
const std::vector<bool>& is_sparse_gradient,
const std::vector<size_t>& group_size_limits,
const std::vector<int64_t>& tensor_indices = {});
#endif
} // namespace imperative
} // namespace paddle