You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_affine_channel_op.py

154 lines
4.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Unit testing for affine_channel_op
"""
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
def affine_channel(x, scale, bias, layout):
C = x.shape[1] if layout == 'NCHW' else x.shape[-1]
if len(x.shape) == 4:
new_shape = (1, C, 1, 1) if layout == 'NCHW' else (1, 1, 1, C)
else:
new_shape = (1, C)
scale = scale.reshape(new_shape)
bias = bias.reshape(new_shape)
return x * scale + bias
class TestAffineChannelOp(OpTest):
def setUp(self):
self.op_type = "affine_channel"
self.init_test_case()
x = np.random.random(self.shape).astype("float64")
scale = np.random.random(self.C).astype("float64")
bias = np.random.random(self.C).astype("float64")
y = affine_channel(x, scale, bias, self.layout)
self.inputs = {'X': x, 'Scale': scale, 'Bias': bias}
self.attrs = {'data_layout': self.layout}
self.outputs = {'Out': y}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X', 'Scale', 'Bias'], 'Out')
def test_check_grad_stopgrad_dx(self):
self.check_grad(['Scale', 'Bias'], 'Out', no_grad_set=set('X'))
def test_check_grad_stopgrad_dscale_dbias(self):
self.check_grad(['X'], 'Out', no_grad_set=set(['Scale', 'Bias']))
def init_test_case(self):
self.shape = [2, 100, 3, 3]
self.C = 100
self.layout = 'NCHW'
class TestAffineChannelOpError(unittest.TestCase):
def test_errors(self):
with fluid.program_guard(fluid.Program()):
def test_x_type():
input_data = np.random.random(2, 1, 2, 2).astype("float32")
fluid.layers.affine_channel(input_data)
self.assertRaises(TypeError, test_x_type)
def test_x_dtype():
x2 = fluid.layers.data(
name='x2', shape=[None, 1, 2, 2], dtype='int32')
fluid.layers.affine_channel(x2)
self.assertRaises(TypeError, test_x_dtype)
def test_scale_type():
x3 = fluid.layers.data(
name='x3', shape=[None, 1, 2, 2], dtype='float32')
fluid.layers.affine_channel(x3, scale=1)
self.assertRaises(TypeError, test_scale_type)
def test_bias_type():
x4 = fluid.layers.data(
name='x4', shape=[None, 1, 2, 2], dtype='float32')
fluid.layers.affine_channel(x4, bias=1)
self.assertRaises(TypeError, test_bias_type)
class TestAffineChannelNHWC(TestAffineChannelOp):
def init_test_case(self):
self.shape = [2, 3, 3, 100]
self.C = 100
self.layout = 'NHWC'
def test_check_grad_stopgrad_dx(self):
return
def test_check_grad_stopgrad_dscale_dbias(self):
return
class TestAffineChannel2D(TestAffineChannelOp):
def init_test_case(self):
self.shape = [2, 100]
self.C = 100
self.layout = 'NCHW'
def test_check_grad_stopgrad_dx(self):
return
def test_check_grad_stopgrad_dscale_dbias(self):
return
# TODO(qingqing): disable unit testing for large shape
#class TestAffineChannelNCHWLargeShape(TestAffineChannelOp):
# def init_test_case(self):
# self.shape = [4, 128, 112, 112]
# self.C = 128
# self.layout = 'NCHW'
#
# # since the gradient check is very slow in large shape, so skip check_grad
# def test_check_grad(self):
# pass
#
# def test_check_grad_stopgrad_dx(self):
# pass
#
# def test_check_grad_stopgrad_dscale_dbias(self):
# pass
#class TestAffineChannelNHWCLargeShape(TestAffineChannelNCHWLargeShape):
# def init_test_case(self):
# self.shape = [64, 32, 32, 128]
# self.C = 128
# self.layout = 'NHWC'
if __name__ == '__main__':
unittest.main()