You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							333 lines
						
					
					
						
							13 KiB
						
					
					
				
			
		
		
	
	
							333 lines
						
					
					
						
							13 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include <limits>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| 
 | |
| static constexpr int kROISize = 4;
 | |
| 
 | |
| template <class T>
 | |
| void PreCalcForBilinearInterpolate(
 | |
|     const platform::DeviceContext& ctx, const int height, const int width,
 | |
|     const int pooled_height, const int pooled_width, const int iy_upper,
 | |
|     const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
 | |
|     int roi_bin_grid_h, int roi_bin_grid_w, Tensor* pre_pos, Tensor* pre_w) {
 | |
|   int pre_calc_index = 0;
 | |
|   int* pre_pos_data = pre_pos->mutable_data<int>(ctx.GetPlace());
 | |
|   T* pre_w_data = pre_w->mutable_data<T>(ctx.GetPlace());
 | |
|   for (int ph = 0; ph < pooled_height; ph++) {
 | |
|     for (int pw = 0; pw < pooled_width; pw++) {
 | |
|       for (int iy = 0; iy < iy_upper; iy++) {
 | |
|         // calculate y of sample points
 | |
|         T y = roi_ymin + ph * bin_size_h +
 | |
|               static_cast<T>(iy + .5f) * bin_size_h /
 | |
|                   static_cast<T>(roi_bin_grid_h);
 | |
|         // calculate x of samle points
 | |
|         for (int ix = 0; ix < ix_upper; ix++) {
 | |
|           T x = roi_xmin + pw * bin_size_w +
 | |
|                 static_cast<T>(ix + .5f) * bin_size_w /
 | |
|                     static_cast<T>(roi_bin_grid_w);
 | |
|           // deal with elements out of map
 | |
|           if (y < -1.0 || y > height || x < -1.0 || x > width) {
 | |
|             for (int i = 0; i < kROISize; ++i) {
 | |
|               pre_pos_data[i + pre_calc_index * kROISize] = 0;
 | |
|               pre_w_data[i + pre_calc_index * kROISize] = 0;
 | |
|             }
 | |
|             pre_calc_index += 1;
 | |
|             continue;
 | |
|           }
 | |
|           y = y <= 0 ? 0 : y;
 | |
|           x = x <= 0 ? 0 : x;
 | |
| 
 | |
|           int y_low = static_cast<int>(y);
 | |
|           int x_low = static_cast<int>(x);
 | |
|           int y_high;
 | |
|           int x_high;
 | |
|           if (y_low >= height - 1) {
 | |
|             y_high = y_low = height - 1;
 | |
|             y = static_cast<T>(y_low);
 | |
|           } else {
 | |
|             y_high = y_low + 1;
 | |
|           }
 | |
|           if (x_low >= width - 1) {
 | |
|             x_high = x_low = width - 1;
 | |
|             x = static_cast<T>(x_low);
 | |
|           } else {
 | |
|             x_high = x_low + 1;
 | |
|           }
 | |
|           T ly = y - y_low, lx = x - x_low;
 | |
|           T hy = 1. - ly, hx = 1. - lx;
 | |
|           pre_pos_data[pre_calc_index * kROISize] = y_low * width + x_low;
 | |
|           pre_pos_data[pre_calc_index * kROISize + 1] = y_low * width + x_high;
 | |
|           pre_pos_data[pre_calc_index * kROISize + 2] = y_high * width + x_low;
 | |
|           pre_pos_data[pre_calc_index * kROISize + 3] = y_high * width + x_high;
 | |
|           pre_w_data[pre_calc_index * kROISize] = hy * hx;
 | |
|           pre_w_data[pre_calc_index * kROISize + 1] = hy * lx;
 | |
|           pre_w_data[pre_calc_index * kROISize + 2] = ly * hx;
 | |
|           pre_w_data[pre_calc_index * kROISize + 3] = ly * lx;
 | |
|           pre_calc_index += 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
 | |
|                                    const T out_grad_this_bin, const T count,
 | |
|                                    T* batch_grad_data) {
 | |
|   int x_low, y_low, x_high, y_high;
 | |
|   T w1, w2, w3, w4;
 | |
|   if (y < -1.0 || y > height || x < -1.0 || x > width) {
 | |
|     w1 = w2 = w3 = w4 = 0;
 | |
|     x_low = x_high = y_low = y_high = -1;
 | |
|     return;
 | |
|   }
 | |
|   y = y <= 0 ? 0 : y;
 | |
|   x = x <= 0 ? 0 : x;
 | |
|   y_low = static_cast<int>(y);
 | |
|   x_low = static_cast<int>(x);
 | |
|   if (y_low >= height - 1) {
 | |
|     y_high = y_low = height - 1;
 | |
|     y = static_cast<T>(y_low);
 | |
|   } else {
 | |
|     y_high = y_low + 1;
 | |
|   }
 | |
| 
 | |
|   if (x_low >= width - 1) {
 | |
|     x_high = x_low = width - 1;
 | |
|     x = static_cast<T>(x_low);
 | |
|   } else {
 | |
|     x_high = x_low + 1;
 | |
|   }
 | |
| 
 | |
|   T ly = y - y_low, lx = x - x_low;
 | |
|   T hy = 1. - ly, hx = 1. - lx;
 | |
|   w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
 | |
|   T diff1 = out_grad_this_bin * w1 / count;
 | |
|   T diff2 = out_grad_this_bin * w2 / count;
 | |
|   T diff3 = out_grad_this_bin * w3 / count;
 | |
|   T diff4 = out_grad_this_bin * w4 / count;
 | |
|   if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
 | |
|     *(batch_grad_data + y_low * width + x_low) += diff1;
 | |
|     *(batch_grad_data + y_low * width + x_high) += diff2;
 | |
|     *(batch_grad_data + y_high * width + x_low) += diff3;
 | |
|     *(batch_grad_data + y_high * width + x_high) += diff4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class CPUROIAlignOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* in = ctx.Input<framework::Tensor>("X");
 | |
|     auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | |
|     auto* out = ctx.Output<framework::Tensor>("Out");
 | |
|     auto pooled_height = ctx.Attr<int>("pooled_height");
 | |
|     auto pooled_width = ctx.Attr<int>("pooled_width");
 | |
|     auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | |
|     auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
 | |
| 
 | |
|     auto& dev_ctx = ctx.template device_context<DeviceContext>();
 | |
| 
 | |
|     auto in_dims = in->dims();
 | |
|     int batch_size = in_dims[0];
 | |
|     int channels = in_dims[1];
 | |
|     int height = in_dims[2];
 | |
|     int width = in_dims[3];
 | |
|     int rois_num = rois->dims()[0];
 | |
| 
 | |
|     auto in_stride = framework::stride(in_dims);
 | |
|     auto roi_stride = framework::stride(rois->dims());
 | |
|     auto out_stride = framework::stride(out->dims());
 | |
| 
 | |
|     const T* input_data = in->data<T>();
 | |
|     framework::Tensor roi_batch_id_list;
 | |
|     roi_batch_id_list.Resize({rois_num});
 | |
|     int* roi_batch_id_data =
 | |
|         roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | |
| 
 | |
|     auto rois_lod = rois->lod().back();
 | |
|     int rois_batch_size = rois_lod.size() - 1;
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         rois_batch_size, batch_size,
 | |
|         "The rois_batch_size and imgs batch_size must be the same.");
 | |
|     int rois_num_with_lod = rois_lod[rois_batch_size];
 | |
|     PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
 | |
|                       "The rois_num from input and lod must be the same.");
 | |
|     for (int n = 0; n < rois_batch_size; ++n) {
 | |
|       for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | |
|         roi_batch_id_data[i] = n;
 | |
|       }
 | |
|     }
 | |
|     T* output_data = out->mutable_data<T>(ctx.GetPlace());
 | |
|     const T* rois_data = rois->data<T>();
 | |
|     for (int n = 0; n < rois_num; ++n) {
 | |
|       int roi_batch_id = roi_batch_id_data[n];
 | |
|       T roi_xmin = rois_data[0] * spatial_scale;
 | |
|       T roi_ymin = rois_data[1] * spatial_scale;
 | |
|       T roi_xmax = rois_data[2] * spatial_scale;
 | |
|       T roi_ymax = rois_data[3] * spatial_scale;
 | |
| 
 | |
|       T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
 | |
|       T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
 | |
|       T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
 | |
|       T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
 | |
|       const T* batch_data = input_data + roi_batch_id * in_stride[0];
 | |
| 
 | |
|       int roi_bin_grid_h = (sampling_ratio > 0)
 | |
|                                ? sampling_ratio
 | |
|                                : ceil(roi_height / pooled_height);
 | |
|       int roi_bin_grid_w = (sampling_ratio > 0)
 | |
|                                ? sampling_ratio
 | |
|                                : ceil(roi_width / pooled_width);
 | |
|       const T count = roi_bin_grid_h * roi_bin_grid_w;
 | |
|       Tensor pre_pos;
 | |
|       Tensor pre_w;
 | |
|       int pre_size = count * out_stride[1];
 | |
|       pre_pos.Resize({pre_size, kROISize});
 | |
|       pre_w.Resize({pre_size, kROISize});
 | |
| 
 | |
|       PreCalcForBilinearInterpolate(
 | |
|           dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
 | |
|           roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
 | |
|           roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
 | |
|       const int* pre_pos_data = pre_pos.data<int>();
 | |
|       const T* pre_w_data = pre_w.data<T>();
 | |
|       for (int c = 0; c < channels; c++) {
 | |
|         int pre_calc_index = 0;
 | |
|         for (int ph = 0; ph < pooled_height; ph++) {
 | |
|           for (int pw = 0; pw < pooled_width; pw++) {
 | |
|             const int pool_index = ph * pooled_width + pw;
 | |
|             T output_val = 0;
 | |
|             for (int iy = 0; iy < roi_bin_grid_h; iy++) {
 | |
|               for (int ix = 0; ix < roi_bin_grid_w; ix++) {
 | |
|                 for (int i = 0; i < kROISize; i++) {
 | |
|                   int pos = pre_pos_data[pre_calc_index * kROISize + i];
 | |
|                   T w = pre_w_data[pre_calc_index * kROISize + i];
 | |
|                   output_val += w * batch_data[pos];
 | |
|                 }
 | |
|                 pre_calc_index += 1;
 | |
|               }
 | |
|             }
 | |
|             output_val /= count;
 | |
|             output_data[pool_index] = output_val;
 | |
|           }
 | |
|         }
 | |
|         batch_data += in_stride[1];
 | |
|         output_data += out_stride[1];
 | |
|       }
 | |
|       rois_data += roi_stride[0];
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* in = ctx.Input<framework::Tensor>("X");
 | |
|     auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
 | |
|     auto* out_grad =
 | |
|         ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
| 
 | |
|     auto pooled_height = ctx.Attr<int>("pooled_height");
 | |
|     auto pooled_width = ctx.Attr<int>("pooled_width");
 | |
|     auto spatial_scale = ctx.Attr<float>("spatial_scale");
 | |
|     auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
 | |
|     auto in_dims = in->dims();
 | |
|     if (!in_grad) {
 | |
|       return;
 | |
|     }
 | |
|     int channels = in_dims[1];
 | |
|     int height = in_dims[2];
 | |
|     int width = in_dims[3];
 | |
|     int rois_num = rois->dims()[0];
 | |
|     Tensor roi_batch_id_list;
 | |
|     roi_batch_id_list.Resize({rois_num});
 | |
|     int* roi_batch_id_data =
 | |
|         roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
 | |
| 
 | |
|     auto rois_lod = rois->lod().back();
 | |
|     int rois_batch_size = rois_lod.size() - 1;
 | |
|     for (int n = 0; n < rois_batch_size; ++n) {
 | |
|       for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
 | |
|         roi_batch_id_data[i] = n;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const T* rois_data = rois->data<T>();
 | |
|     const T* out_grad_data = out_grad->data<T>();
 | |
|     T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
 | |
| 
 | |
|     auto in_stride = framework::stride(in->dims());
 | |
|     auto roi_stride = framework::stride(rois->dims());
 | |
|     auto out_stride = framework::stride(out_grad->dims());
 | |
| 
 | |
|     for (int n = 0; n < rois_num; ++n) {
 | |
|       int roi_batch_idx = roi_batch_id_data[n];
 | |
|       T roi_xmin = rois_data[0] * spatial_scale;
 | |
|       T roi_ymin = rois_data[1] * spatial_scale;
 | |
|       T roi_xmax = rois_data[2] * spatial_scale;
 | |
|       T roi_ymax = rois_data[3] * spatial_scale;
 | |
|       T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
 | |
|       T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
 | |
|       T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
 | |
|       T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
 | |
|       for (int c = 0; c < channels; ++c) {
 | |
|         T* batch_grad_data =
 | |
|             in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
 | |
|         const T* batch_out_grad_data =
 | |
|             out_grad_data + n * out_stride[0] + c * out_stride[1];
 | |
|         for (int ph = 0; ph < pooled_height; ++ph) {
 | |
|           for (int pw = 0; pw < pooled_width; ++pw) {
 | |
|             int pool_index = ph * pooled_width + pw;
 | |
|             T out_grad_this_bin = batch_out_grad_data[pool_index];
 | |
|             int roi_bin_grid_h = (sampling_ratio > 0)
 | |
|                                      ? sampling_ratio
 | |
|                                      : ceil(roi_height / pooled_height);
 | |
|             int roi_bin_grid_w = (sampling_ratio > 0)
 | |
|                                      ? sampling_ratio
 | |
|                                      : ceil(roi_width / pooled_width);
 | |
|             T count = roi_bin_grid_h * roi_bin_grid_w;
 | |
|             for (int iy = 0; iy < roi_bin_grid_h; iy++) {
 | |
|               const T y = roi_ymin + ph * bin_size_h +
 | |
|                           static_cast<T>(iy + .5f) * bin_size_h /
 | |
|                               static_cast<T>(roi_bin_grid_h);
 | |
|               for (int ix = 0; ix < roi_bin_grid_w; ix++) {
 | |
|                 const T x = roi_xmin + pw * bin_size_w +
 | |
|                             static_cast<T>(ix + .5f) * bin_size_w /
 | |
|                                 static_cast<T>(roi_bin_grid_w);
 | |
|                 bilinear_interpolate_gradient(height, width, y, x,
 | |
|                                               out_grad_this_bin, count,
 | |
|                                               batch_grad_data);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       rois_data += roi_stride[0];
 | |
|     }
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |