You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.7 KiB
80 lines
2.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "BatchNormBaseLayer.h"
|
|
#include "BatchNormalizationLayer.h"
|
|
#include "Layer.h"
|
|
#include "paddle/utils/Stat.h"
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "CudnnBatchNormLayer.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
|
|
bool BatchNormBaseLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
/* Initialize the basic parent class */
|
|
if (!Layer::init(layerMap, parameterMap)) return false;
|
|
|
|
/* initialize the weightList */
|
|
// first is Input in configure
|
|
// other two is created in config_parser.py
|
|
CHECK_EQ(inputLayers_.size(), 3U);
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK_EQ(inputLayers_.size(), size_t(config_.inputs_size()));
|
|
const ImageConfig& conf = config_.inputs(0).image_conf();
|
|
channels_ = conf.channels();
|
|
calFeatureMapSize();
|
|
|
|
if (config_.has_use_global_stats()) {
|
|
useGlobalStats_ = config_.use_global_stats();
|
|
}
|
|
movingAvgFraction_ = config_.moving_average_fraction();
|
|
|
|
weight_.reset(new Weight(1, channels_, parameters_[0]));
|
|
movingMean_.reset(new Weight(1, channels_, parameters_[1]));
|
|
movingVar_.reset(new Weight(1, channels_, parameters_[2]));
|
|
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, channels_, biasParameter_));
|
|
}
|
|
|
|
savedMean_ = Matrix::create(1, channels_, false, useGpu_);
|
|
savedInvVar_ = Matrix::create(1, channels_, false, useGpu_);
|
|
savedMean_->zeroMem();
|
|
savedInvVar_->zeroMem();
|
|
|
|
return true;
|
|
}
|
|
|
|
void BatchNormBaseLayer::calFeatureMapSize() {
|
|
const ImageConfig& conf = config_.inputs(0).image_conf();
|
|
imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
|
|
imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
|
|
imageD_ = inputLayers_[0]->getOutput().getFrameDepth();
|
|
|
|
if (0 == imageD_) imageD_ = conf.img_size_z();
|
|
if (imageH_ == 0 && imageW_ == 0) {
|
|
imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
|
|
imageW_ = conf.img_size();
|
|
} else {
|
|
getOutput().setFrameHeight(imageH_);
|
|
getOutput().setFrameWidth(imageW_);
|
|
getOutput().setFrameDepth(imageD_);
|
|
}
|
|
imgPixels_ = imageH_ * imageW_ * imageD_;
|
|
}
|
|
|
|
} // namespace paddle
|