You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
550 lines
19 KiB
550 lines
19 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNConvLayer.h"
|
|
#include "paddle/math/MathUtils.h"
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
using namespace mkldnn; // NOLINT
|
|
typedef memory::format format;
|
|
|
|
namespace paddle {
|
|
|
|
REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
|
|
|
|
bool MKLDNNConvLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
|
return false;
|
|
}
|
|
CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
|
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
|
CHECK(config_.shared_biases()) << "Only support shared biases yet";
|
|
|
|
oc_ = config_.num_filters();
|
|
const ConvConfig& conf = config_.inputs(0).conv_conf();
|
|
ic_ = conf.channels();
|
|
fw_ = conf.filter_size();
|
|
fh_ = conf.filter_size_y();
|
|
pw_ = conf.padding();
|
|
ph_ = conf.padding_y();
|
|
dw_ = conf.dilation();
|
|
dh_ = conf.dilation_y();
|
|
sw_ = conf.stride();
|
|
sh_ = conf.stride_y();
|
|
gp_ = conf.groups();
|
|
oh_ = conf.output_y();
|
|
ow_ = conf.output_x();
|
|
ih_ = conf.img_size_y();
|
|
iw_ = conf.img_size();
|
|
caffeMode_ = conf.caffe_mode();
|
|
CHECK(caffeMode_) << "Only support caffe mode yet";
|
|
CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
|
|
// check group setting
|
|
CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
|
|
CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
|
|
|
|
// create weight
|
|
size_t height = oc_ / gp_;
|
|
size_t width = ic_ * fh_ * fw_;
|
|
CHECK_EQ(parameters_[0]->getSize(), height * width);
|
|
weight_ =
|
|
std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));
|
|
|
|
// create biases
|
|
if (biasParameter_.get() != NULL) {
|
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MKLDNNConvLayer::convertWeightsFromPaddle() {
|
|
if (hasInitedWgt_) {
|
|
return;
|
|
}
|
|
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
// the paddle weight format is oihw or goihw
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
|
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
|
|
hasInitedWgt_ = true;
|
|
}
|
|
|
|
void MKLDNNConvLayer::convertWeightsToPaddle() {
|
|
CHECK(wgtVal_) << "should have been initialized";
|
|
auto targetDim = wgtVal_->getDims();
|
|
auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
|
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
|
|
}
|
|
|
|
void MKLDNNConvLayer::reshape(
|
|
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
|
|
reshapeInput(bs, ih, iw);
|
|
|
|
// cal output sizes
|
|
// oc can not be changed
|
|
int fh = (fh_ - 1) * dh_ + 1;
|
|
int fw = (fw_ - 1) * dw_ + 1;
|
|
oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
|
|
ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
|
|
|
|
reshapeOutput(oh, ow);
|
|
resizeOutput(bs, oc * oh * ow);
|
|
|
|
printSizeInfo();
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
resetFwdPD(fwdPD_);
|
|
|
|
resetFwdBuffers(fwdPD_, in, wgt, bias, out);
|
|
|
|
resetFwdPipeline(pipeline, fwdPD_, in, wgt, bias, out);
|
|
|
|
printValueFormatFlow();
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
|
|
std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;
|
|
|
|
resetBwdWgtPD(bwdWgtPD);
|
|
|
|
resetBwdDataPD(bwdDataPD);
|
|
|
|
resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgt, bias, out);
|
|
|
|
resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgt, bias, out);
|
|
|
|
printGradFormatFlow();
|
|
}
|
|
|
|
void MKLDNNConvLayer::updateInputData() {
|
|
cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
|
|
}
|
|
|
|
void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
|
|
weight_->getParameterPtr()->incUpdate(callback);
|
|
if (biases_ && biases_->getWGrad()) {
|
|
biases_->getParameterPtr()->incUpdate(callback);
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
|
|
memory::dims& bias,
|
|
memory::dims& stride,
|
|
memory::dims& dilation,
|
|
memory::dims& padL,
|
|
memory::dims& padR) {
|
|
wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
|
|
: memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
|
|
bias = memory::dims{oc_};
|
|
stride = memory::dims{sh_, sw_};
|
|
padL = memory::dims{ph_, pw_};
|
|
padR = getPaddingR();
|
|
// note: mkldnn dilation start from 0
|
|
dilation = memory::dims{dh_ - 1, dw_ - 1};
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdPD(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd) {
|
|
// dims for conv
|
|
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
|
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
|
|
prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
|
|
: prop_kind::forward_training;
|
|
algorithm algo = algorithm::convolution_direct;
|
|
padding_kind padKind = padding_kind::zero;
|
|
conv_fwd::desc fwdDesc =
|
|
biases_ && biases_->getW()
|
|
? conv_fwd::desc(pk,
|
|
algo,
|
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
MKLDNNMatrix::createMemoryDesc(biasDims),
|
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
|
strides,
|
|
dilations,
|
|
padL,
|
|
padR,
|
|
padKind)
|
|
: conv_fwd::desc(pk,
|
|
algo,
|
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
|
strides,
|
|
dilations,
|
|
padL,
|
|
padR,
|
|
padKind);
|
|
pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdBuffers(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(pd);
|
|
resetInValue(pd, in);
|
|
|
|
resetWgtBiasValue(pd, wgt, bias);
|
|
|
|
resetOutValue(pd, out);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetFwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
if (cvtInVal_) {
|
|
pipeline.push_back(*cvtInVal_);
|
|
}
|
|
|
|
if (bias) {
|
|
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
|
|
} else {
|
|
fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
|
|
}
|
|
pipeline.push_back(*fwd_);
|
|
|
|
if (cvtOutVal_) {
|
|
pipeline.push_back(*cvtOutVal_);
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetInValue(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& in) {
|
|
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
|
|
in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());
|
|
|
|
// create buffer and reorder if input value do not match
|
|
cpuInVal_ = nullptr;
|
|
cvtInVal_ = nullptr;
|
|
|
|
MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
|
|
CHECK_EQ(inputIsOnlyMKLDNN(), dnnIn != nullptr);
|
|
if (dnnIn != nullptr && dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) {
|
|
in = dnnIn;
|
|
return;
|
|
}
|
|
if (dnnIn) {
|
|
if (dnnIn->getFormat() == format::nc) {
|
|
CHECK(ih_ == 1 && iw_ == 1) << "when input is nc format";
|
|
// create a new one with nchw format and same data
|
|
memory::dims inDims = memory::dims{bs_, ic_, 1, 1};
|
|
dnnIn = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
|
|
}
|
|
if (dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc()) {
|
|
in = dnnIn;
|
|
return;
|
|
}
|
|
cpuInVal_ = dnnIn;
|
|
in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
|
|
cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
|
|
CHECK(cvtInVal_) << "should not be emptry";
|
|
} else {
|
|
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
|
|
cpuInVal_ = MKLDNNMatrix::create(inMat, inDims, format::nchw, engine_);
|
|
if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
|
|
// create new mkldnn matrix
|
|
in = MKLDNNMatrix::create(nullptr, pd->src_primitive_desc());
|
|
cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
|
|
CHECK(cvtInVal_) << "should not be emptry";
|
|
} else {
|
|
in = cpuInVal_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetWgtBiasValue(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias) {
|
|
wgt = MKLDNNMatrix::create(weight_->getW(), pd->weights_primitive_desc());
|
|
VLOG(MKLDNN_FMTS) << "Weight value format: " << wgt->getFormat();
|
|
|
|
bias = (biases_ && biases_->getW())
|
|
? MKLDNNMatrix::create(biases_->getW(), pd->bias_primitive_desc())
|
|
: nullptr;
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetOutValue(
|
|
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& out) {
|
|
out = MKLDNNMatrix::create(output_.value, pd->dst_primitive_desc());
|
|
|
|
// create reorder if output value has cpu device and pd do not match
|
|
cpuOutVal_ = nullptr;
|
|
cvtOutVal_ = nullptr;
|
|
if (!outputIsOnlyMKLDNN()) {
|
|
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
|
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
|
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
|
|
if (cpuOutVal_->getPrimitiveDesc() != pd->dst_primitive_desc()) {
|
|
out = MKLDNNMatrix::create(nullptr, pd->dst_primitive_desc());
|
|
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
|
|
CHECK(cvtOutVal_) << "should not be empty";
|
|
} else {
|
|
cpuOutVal_ = out;
|
|
}
|
|
// when output is cpu device, change the mkldnn output value and make them
|
|
// share the same data. Then if next layer use inputlayer->getOuputValue()
|
|
// to achieve the input value, it will get the right data.
|
|
output_.value = std::dynamic_pointer_cast<Matrix>(cpuOutVal_);
|
|
return;
|
|
}
|
|
output_.value = std::dynamic_pointer_cast<Matrix>(out);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdWgtPD(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
|
|
// create backward weight using input, output and weight value memory desc
|
|
CHECK(inVal_) << "Should have input value";
|
|
CHECK(outVal_) << "Should have output value";
|
|
CHECK(wgtVal_) << "Should have weight value";
|
|
algorithm algo = algorithm::convolution_direct;
|
|
padding_kind padKind = padding_kind::zero;
|
|
auto bwdWgtDesc = biasVal_ != nullptr
|
|
? conv_bwdWgt::desc(algo,
|
|
inVal_->getMemoryDesc(),
|
|
wgtVal_->getMemoryDesc(),
|
|
biasVal_->getMemoryDesc(),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padKind)
|
|
: conv_bwdWgt::desc(algo,
|
|
inVal_->getMemoryDesc(),
|
|
wgtVal_->getMemoryDesc(),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padKind);
|
|
pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
|
|
CHECK(pd->src_primitive_desc() == inVal_->getPrimitiveDesc())
|
|
<< "primitive desc of in value should equal";
|
|
CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
|
|
<< "primitive desc of out grad should equal the out value";
|
|
CHECK(pd->diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
|
|
<< "primitive desc of weight grad should equal the weight value";
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdDataPD(
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
|
|
pd = nullptr;
|
|
if (inputLayers_[0]->getOutput().grad == nullptr) {
|
|
return;
|
|
}
|
|
|
|
memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
|
|
loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
|
|
CHECK(inVal_) << "Should have input value";
|
|
CHECK(outVal_) << "Should have output value";
|
|
// create backward data using input and output value memory desc
|
|
// but using weight memory desc with any format
|
|
auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
|
|
inVal_->getMemoryDesc(),
|
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
|
outVal_->getMemoryDesc(),
|
|
strides,
|
|
padL,
|
|
padR,
|
|
padding_kind::zero);
|
|
pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
|
|
CHECK(pd->diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
|
|
<< "primitive desc of in grad should equal the in value";
|
|
CHECK(pd->diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
|
|
<< "primitive desc of out grad should equal";
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdBuffers(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
CHECK(wgtPD);
|
|
resetOutGrad(wgtPD, out);
|
|
|
|
resetWgtBiasGrad(wgtPD, wgt, bias);
|
|
|
|
resetInGrad(dataPD, in);
|
|
|
|
resetWgtValBwdData(dataPD, wgtValBwdData_);
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetBwdPipeline(
|
|
std::vector<primitive>& pipeline,
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& in,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias,
|
|
MKLDNNMatrixPtr& out) {
|
|
if (cvtOutGrad_) {
|
|
pipeline.push_back(*cvtOutGrad_);
|
|
}
|
|
|
|
// add bwdWgt handle
|
|
if (bias) {
|
|
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
|
|
} else {
|
|
bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
|
|
}
|
|
pipeline.push_back(*bwdWgt_);
|
|
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (cvtWgtVal_) {
|
|
pipeline.push_back(*cvtWgtVal_);
|
|
}
|
|
|
|
// add bwdData handle
|
|
CHECK(wgtValBwdData_) << "Should have weight memory";
|
|
bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
|
|
pipeline.push_back(*bwdData_);
|
|
|
|
if (cvtInGrad_) {
|
|
pipeline.push_back(*cvtInGrad_);
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetOutGrad(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD, MKLDNNMatrixPtr& out) {
|
|
cpuOutGrad_ = nullptr;
|
|
cvtOutGrad_ = nullptr;
|
|
CHECK(outVal_ != nullptr &&
|
|
outVal_->getPrimitiveDesc() == wgtPD->diff_dst_primitive_desc())
|
|
<< "primitive desc of out grad and value should be equal";
|
|
if (outputIsOnlyMKLDNN()) {
|
|
MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
|
|
} else {
|
|
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
|
|
// same PrimitiveDesc with cpuInVal_
|
|
CHECK(cpuOutVal_);
|
|
cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
|
|
// create reorder if primitive desc does not match
|
|
if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
|
|
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
|
|
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
|
|
CHECK(cvtOutGrad_);
|
|
} else {
|
|
// share the same data of CPU output
|
|
output_.grad->setData(cpuOut->getData());
|
|
out = cpuOutGrad_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetWgtBiasGrad(
|
|
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
|
|
MKLDNNMatrixPtr& wgt,
|
|
MKLDNNMatrixPtr& bias) {
|
|
wgt = MKLDNNMatrix::create(weight_->getWGrad(),
|
|
wgtPD->diff_weights_primitive_desc());
|
|
CHECK(nullptr != wgtVal_ &&
|
|
wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
|
|
<< "primitive desc of weight grad and value should be equal";
|
|
VLOG(MKLDNN_FMTS) << "weight grad format: " << wgt->getFormat();
|
|
|
|
bias = nullptr;
|
|
if (biasVal_ == nullptr) {
|
|
return;
|
|
}
|
|
bias = MKLDNNMatrix::create(biases_->getWGrad(),
|
|
wgtPD->diff_bias_primitive_desc());
|
|
CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
|
|
<< "primitive desc of bias grad should equal the bias value";
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetInGrad(
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& in) {
|
|
in = nullptr;
|
|
cpuInGrad_ = nullptr;
|
|
cvtInGrad_ = nullptr;
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (inputIsOnlyMKLDNN()) {
|
|
MKLDNNLayer::resetInGrad(in, dataPD->diff_src_primitive_desc());
|
|
CHECK(nullptr != inVal_ &&
|
|
in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
|
|
<< "primitive desc of input grad and value should be equal";
|
|
} else {
|
|
const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
|
|
// same PrimitiveDesc with cpuInVal_
|
|
CHECK(cpuInVal_);
|
|
cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
|
|
in = cpuInGrad_;
|
|
// create reorder if PrimitiveDesc does not match
|
|
if (cpuInGrad_->getPrimitiveDesc() != dataPD->diff_src_primitive_desc()) {
|
|
in = MKLDNNMatrix::create(getInputGrad(0, MKLDNN_DEVICE),
|
|
dataPD->diff_src_primitive_desc());
|
|
cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
|
|
CHECK(cvtInGrad_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MKLDNNConvLayer::resetWgtValBwdData(
|
|
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
|
|
MKLDNNMatrixPtr& wgt) {
|
|
if (dataPD == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// create new weight value for backward data, and create reorder if necessary
|
|
// since the primitive_desc would be different with wgtVal_
|
|
CHECK(wgtVal_) << "should have weight value";
|
|
if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
|
|
wgtValBwdData_ =
|
|
MKLDNNMatrix::create(nullptr, dataPD->weights_primitive_desc());
|
|
cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
|
|
CHECK(cvtWgtVal_);
|
|
} else {
|
|
wgtValBwdData_ = wgtVal_;
|
|
}
|
|
VLOG(MKLDNN_FMTS) << "weight value format for backward data: "
|
|
<< wgtValBwdData_->getFormat();
|
|
}
|
|
|
|
} // namespace paddle
|