You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
5.6 KiB
155 lines
5.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "Layer.h"
|
|
#include "paddle/math/BaseMatrix.h"
|
|
#include "paddle/math/Matrix.h"
|
|
|
|
namespace paddle {
|
|
/**
|
|
* @brief A layer for generating priorbox locations and variances.
|
|
* - Input: Two and only two input layer are accepted. The input layer must be
|
|
* be a data output layer and a convolution output layer.
|
|
* - Output: The priorbox locations and variances of the input data.
|
|
* Reference:
|
|
* Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
|
|
* Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
|
|
*/
|
|
|
|
class PriorBoxLayer : public Layer {
|
|
public:
|
|
explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
|
|
bool init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) override;
|
|
|
|
void forward(PassType passType) override;
|
|
void backward(const UpdateCallback& callback) override {}
|
|
|
|
protected:
|
|
int numPriors_;
|
|
std::vector<int> minSize_;
|
|
std::vector<int> maxSize_;
|
|
std::vector<real> aspectRatio_;
|
|
std::vector<real> variance_;
|
|
MatrixPtr buffer_;
|
|
};
|
|
|
|
REGISTER_LAYER(priorbox, PriorBoxLayer);
|
|
|
|
bool PriorBoxLayer::init(const LayerMap& layerMap,
|
|
const ParameterMap& parameterMap) {
|
|
Layer::init(layerMap, parameterMap);
|
|
auto pbConf = config_.inputs(0).priorbox_conf();
|
|
std::vector<real> tmp;
|
|
aspectRatio_.push_back(1.);
|
|
std::copy(pbConf.min_size().begin(),
|
|
pbConf.min_size().end(),
|
|
std::back_inserter(minSize_));
|
|
std::copy(pbConf.max_size().begin(),
|
|
pbConf.max_size().end(),
|
|
std::back_inserter(maxSize_));
|
|
std::copy(pbConf.variance().begin(),
|
|
pbConf.variance().end(),
|
|
std::back_inserter(variance_));
|
|
std::copy(pbConf.aspect_ratio().begin(),
|
|
pbConf.aspect_ratio().end(),
|
|
std::back_inserter(tmp));
|
|
// flip
|
|
int inputRatioLength = tmp.size();
|
|
for (int index = 0; index < inputRatioLength; index++) {
|
|
aspectRatio_.push_back(tmp[index]);
|
|
aspectRatio_.push_back(1 / tmp[index]);
|
|
}
|
|
numPriors_ = aspectRatio_.size();
|
|
if (maxSize_.size() > 0) numPriors_++;
|
|
return true;
|
|
}
|
|
|
|
void PriorBoxLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
auto input = getInput(0);
|
|
int layerWidth = input.getFrameWidth();
|
|
int layerHeight = input.getFrameHeight();
|
|
|
|
auto image = getInput(1);
|
|
int imageWidth = image.getFrameWidth();
|
|
int imageHeight = image.getFrameHeight();
|
|
|
|
real stepW = static_cast<real>(imageWidth) / layerWidth;
|
|
real stepH = static_cast<real>(imageHeight) / layerHeight;
|
|
int dim = layerHeight * layerWidth * numPriors_ * 4;
|
|
reserveOutput(1, dim * 2);
|
|
// use a cpu buffer to compute
|
|
Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
|
|
auto* tmpPtr = buffer_->getData();
|
|
|
|
int idx = 0;
|
|
for (int h = 0; h < layerHeight; ++h) {
|
|
for (int w = 0; w < layerWidth; ++w) {
|
|
real centerX = (w + 0.5) * stepW;
|
|
real centerY = (h + 0.5) * stepH;
|
|
real minSize = 0;
|
|
for (size_t s = 0; s < minSize_.size(); s++) {
|
|
// first prior.
|
|
minSize = minSize_[s];
|
|
real boxWidth = minSize;
|
|
real boxHeight = minSize;
|
|
// xmin, ymin, xmax, ymax.
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
// set the variance.
|
|
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
|
|
|
|
if (maxSize_.size() > 0) {
|
|
CHECK_EQ(minSize_.size(), maxSize_.size());
|
|
// second prior.
|
|
for (size_t s = 0; s < maxSize_.size(); s++) {
|
|
real maxSize = maxSize_[s];
|
|
boxWidth = boxHeight = sqrt(minSize * maxSize);
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
// set the variance.
|
|
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
|
|
}
|
|
}
|
|
}
|
|
// rest of priors.
|
|
for (size_t r = 0; r < aspectRatio_.size(); r++) {
|
|
real ar = aspectRatio_[r];
|
|
if (fabs(ar - 1.) < 1e-6) continue;
|
|
real boxWidth = minSize * sqrt(ar);
|
|
real boxHeight = minSize / sqrt(ar);
|
|
tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
|
|
tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
|
|
tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
|
|
// set the variance.
|
|
for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
|
|
}
|
|
}
|
|
}
|
|
// clip the prior's coordidate such that it is within [0, 1]
|
|
for (int d = 0; d < dim * 2; ++d)
|
|
if ((d % 8) < 4)
|
|
tmpPtr[d] = std::min(std::max(tmpPtr[d], (real)0.), (real)1.);
|
|
MatrixPtr outV = getOutputValue();
|
|
outV->copyFrom(buffer_->data_, dim * 2);
|
|
}
|
|
|
|
} // namespace paddle
|