203 lines
6.8 KiB
203 lines
6.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/tensor_util.h"
|
|
#include "paddle/fluid/inference/anakin/engine.h"
|
|
#include "paddle/fluid/inference/analysis/helper.h"
|
|
#include "paddle/fluid/inference/utils/singleton.h"
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
using anakin::graph::GraphGlobalMem;
|
|
using anakin::AK_FLOAT;
|
|
using anakin::Precision;
|
|
using anakin::saber::NV;
|
|
using anakin::saber::X86;
|
|
using anakin::saber::Shape;
|
|
using anakin::PBlock;
|
|
using anakin::PTuple;
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
namespace anakin {
|
|
|
|
/*
|
|
* Get a random float value between [low, high]
|
|
*/
|
|
float random(float low, float high) {
|
|
static std::random_device rd;
|
|
static std::mt19937 mt(rd());
|
|
std::uniform_real_distribution<double> dist(low, high);
|
|
return dist(mt);
|
|
}
|
|
|
|
void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
|
|
const platform::DeviceContext& ctx) {
|
|
auto dims = tensor->dims();
|
|
size_t num_elements = analysis::AccuDims(dims, dims.size());
|
|
PADDLE_ENFORCE_GT(num_elements, 0);
|
|
|
|
platform::CPUPlace cpu_place;
|
|
framework::LoDTensor temp_tensor;
|
|
temp_tensor.Resize(dims);
|
|
auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);
|
|
|
|
for (size_t i = 0; i < num_elements; i++) {
|
|
*(temp_data + i) = random(0., 1.);
|
|
}
|
|
|
|
TensorCopySync(temp_tensor, place, tensor);
|
|
}
|
|
|
|
/*
|
|
* Help to validate the correctness between Fluid Op and the corresponding
|
|
* anakin
|
|
* layer.
|
|
*/
|
|
class AnakinConvertValidation {
|
|
using AnakinNvEngineT = AnakinEngine<NV, Precision::FP32>;
|
|
|
|
public:
|
|
AnakinConvertValidation() = delete;
|
|
|
|
AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
|
|
const framework::Scope& scope)
|
|
: parameters_(parameters), scope_(scope), place_(0) {
|
|
PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
|
|
engine_.reset(new AnakinEngine<NV, Precision::FP32>(true));
|
|
}
|
|
|
|
// Declare a Variable as input with random initialization.
|
|
void DeclInputVar(const std::string& name,
|
|
const std::vector<int> tensor_dims) {
|
|
DeclVar(name, tensor_dims);
|
|
// should decalre anakin input here.
|
|
}
|
|
|
|
void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
DeclVar(name, dim_vec);
|
|
}
|
|
|
|
void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
DeclVar(name, dim_vec);
|
|
// should declare anakin output here.
|
|
}
|
|
|
|
void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
|
|
platform::CUDADeviceContext ctx(place_);
|
|
auto* x = scope_.Var(name);
|
|
auto* x_tensor = x->GetMutable<framework::LoDTensor>();
|
|
x_tensor->Resize(framework::make_ddim(dim_vec));
|
|
RandomizeTensor(x_tensor, place_, ctx);
|
|
}
|
|
|
|
void SetOp(const framework::proto::OpDesc& desc) {
|
|
op_ = framework::OpRegistry::CreateOp(desc);
|
|
op_desc_.reset(new framework::OpDesc(desc, nullptr));
|
|
// should init anakin engine here.
|
|
|
|
Singleton<AnakinOpConverter>::Global().ConvertOp(
|
|
desc, parameters_, scope_, engine_.get(), true /*test_mode*/);
|
|
engine_->Freeze();
|
|
for (const auto& input : op_desc_->InputArgumentNames()) {
|
|
if (parameters_.count(input)) continue;
|
|
auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(scope_,
|
|
input);
|
|
auto t_shape = framework::vectorize2int(t.dims());
|
|
engine_->SetInputShape(input, t_shape);
|
|
}
|
|
engine_->Optimize();
|
|
engine_->InitGraph();
|
|
}
|
|
|
|
// We use the set 'neglected_output' here, because some Ops like batch norm,
|
|
// the outputs specified in the op des are only used during training,
|
|
// so we should neglect those output during inference.
|
|
void Execute(int batch_size,
|
|
std::unordered_set<std::string> neglected_output = {}) {
|
|
// Execute Fluid Op
|
|
platform::CUDADeviceContext ctx(place_);
|
|
op_->Run(scope_, place_);
|
|
|
|
// std::vector<framework::LoDTensor> input_vector;
|
|
// std::vector<framework::LoDTensor> output_vector;
|
|
std::map<std::string, framework::LoDTensor*> inputs;
|
|
for (const auto& input : op_desc_->InputArgumentNames()) {
|
|
if (parameters_.count(input)) continue;
|
|
auto* var = scope_.FindVar(input);
|
|
auto tensor = var->GetMutable<framework::LoDTensor>();
|
|
inputs.insert({input, tensor});
|
|
}
|
|
|
|
std::map<std::string, framework::LoDTensor*> outputs;
|
|
std::vector<std::vector<float>> fluid_outputs;
|
|
for (const auto& output : op_desc_->OutputArgumentNames()) {
|
|
if (neglected_output.count(output)) continue;
|
|
std::vector<float> fluid_out;
|
|
auto* var = scope_.FindVar(output);
|
|
auto tensor = var->GetMutable<framework::LoDTensor>();
|
|
framework::TensorToVector(*tensor, ctx, &fluid_out);
|
|
fluid_outputs.push_back(fluid_out);
|
|
|
|
// size_t fluid_out_size = fluid_out.size();
|
|
/*for (size_t i = 0; i < fluid_out_size; i++) {
|
|
std::cout << fluid_out[i] << std::endl;
|
|
}*/
|
|
outputs.insert({output, tensor});
|
|
}
|
|
|
|
engine_->Execute(inputs, outputs);
|
|
int i_output = 0;
|
|
for (const auto& output : op_desc_->OutputArgumentNames()) {
|
|
if (neglected_output.count(output)) continue;
|
|
std::vector<float> anakin_out;
|
|
auto* var = scope_.FindVar(output);
|
|
auto tensor = var->GetMutable<framework::LoDTensor>();
|
|
framework::TensorToVector(*tensor, ctx, &anakin_out);
|
|
|
|
size_t anakin_out_size = anakin_out.size();
|
|
auto fluid_out = fluid_outputs[i_output++];
|
|
for (size_t i = 0; i < anakin_out_size; i++) {
|
|
LOG(INFO) << "Output[" << i << "]: anakin[" << anakin_out[i] << "], "
|
|
<< "fluid[" << fluid_out[i] << "]";
|
|
}
|
|
}
|
|
}
|
|
|
|
framework::Scope& scope() { return scope_; }
|
|
|
|
private:
|
|
std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
|
|
cudaStream_t stream_;
|
|
std::unique_ptr<framework::OperatorBase> op_;
|
|
std::unique_ptr<framework::OpDesc> op_desc_;
|
|
const std::unordered_set<std::string>& parameters_;
|
|
framework::Scope& scope_;
|
|
platform::CUDAPlace place_;
|
|
};
|
|
|
|
} // namespace anakin
|
|
} // namespace inference
|
|
} // namespace paddle
|