You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reduce_ops/reduce_mean_op.cc

121 lines
4.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
#include <memory>
#include <string>
#include <vector>
namespace paddle {
namespace operators {
// NOTE(dengkaipeng): Input(Out) is unnecessary in reduce_mean_grad
// calcualtion, but will incur a reduce_mean_grad op after
// reduce_mean_grad_grad, delete Input(Out) here.
// This change has no effect on reduce_mean_grad calculations.
template <typename T>
class ReduceMeanOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
std::unique_ptr<T> Apply() const override {
std::unique_ptr<T> op(new T());
op->SetType("reduce_mean_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
return op;
}
};
class ReduceMeanDoubleGradDescMaker : public framework::GradOpDescMakerBase {
public:
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
std::vector<std::unique_ptr<framework::OpDesc>> ops;
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
auto out_grads = InputGrad(framework::GradVarName("Out"));
if (!out_grads.empty()) {
auto* out_grad_op = new framework::OpDesc();
out_grad_op->SetType("reduce_mean");
out_grad_op->SetInput("X", x_gg);
out_grad_op->SetAttrMap(Attrs());
out_grad_op->SetOutput("Out", out_grads);
ops.emplace_back(out_grad_op);
}
return ops;
}
};
class ReduceMeanDoubleGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
public:
using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;
std::vector<std::unique_ptr<imperative::OpBase>> operator()() const override {
std::vector<std::unique_ptr<imperative::OpBase>> ops;
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
auto out_grads = InputGrad(framework::GradVarName("Out"));
if (!out_grads.empty()) {
auto* out_grad_op = new imperative::OpBase();
out_grad_op->SetType("reduce_mean");
out_grad_op->SetInput("X", x_gg);
out_grad_op->SetAttrMap(Attrs());
out_grad_op->SetOutput("Out", out_grads);
ops.emplace_back(out_grad_op);
}
return ops;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(ReduceMeanGradNoNeedBufferVarInference,
"X");
} // namespace operators
} // namespace paddle
class __reduce_meanMaker__ : public ops::ReduceOpMaker {
protected:
virtual std::string GetName() const { return "reduce_mean"; }
virtual std::string GetOpType() const { return "Reduce reduce_mean"; }
};
REGISTER_OPERATOR(reduce_mean, ops::ReduceOp, __reduce_meanMaker__,
ops::ReduceMeanOpGradMaker<paddle::framework::OpDesc>,
ops::ReduceMeanOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(reduce_mean_grad, ops::ReduceGradOp,
ops::ReduceMeanDoubleGradDescMaker,
ops::ReduceMeanDoubleGradOpBaseMaker,
ops::ReduceMeanGradNoNeedBufferVarInference);
REGISTER_OP_CPU_KERNEL(reduce_mean,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
float, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
double, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
int, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
int64_t, ops::MeanFunctor>);
template <typename T>
using CPUReduceMeanGradKernel =
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext, T,
ops::MeanGradFunctor, true>;
REGISTER_OP_CPU_KERNEL(reduce_mean_grad, CPUReduceMeanGradKernel<float>,
CPUReduceMeanGradKernel<double>,
CPUReduceMeanGradKernel<int>,
CPUReduceMeanGradKernel<int64_t>);