You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.7 KiB
161 lines
5.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/distributed/distributed.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
class InferShapeContext;
|
|
class OpDesc;
|
|
class Scope;
|
|
template <typename T>
|
|
class EmptyGradOpMaker;
|
|
} // namespace framework
|
|
namespace imperative {
|
|
class OpBase;
|
|
} // namespace imperative
|
|
} // namespace paddle
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
namespace distributed {
|
|
class RPCClient;
|
|
} // namespace distributed
|
|
|
|
class SendOp : public framework::OperatorBase {
|
|
public:
|
|
SendOp(const std::string& type, const framework::VariableNameMap& inputs,
|
|
const framework::VariableNameMap& outputs,
|
|
const framework::AttributeMap& attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
void RunImpl(const framework::Scope& scope,
|
|
const platform::Place& place) const override {
|
|
auto ins = Inputs("X");
|
|
|
|
auto epmap = Attr<std::vector<std::string>>("endpoints");
|
|
auto trainer_id = Attr<int>("trainer_id");
|
|
|
|
auto send_varnames = Attr<std::vector<std::string>>("send_varnames");
|
|
auto height_sections = Attr<std::vector<int64_t>>("sections");
|
|
auto use_send_handler = Attr<bool>("use_send_handler");
|
|
|
|
if (send_varnames.size() > 0) {
|
|
distributed::Communicator::GetInstance()->Send(ins, send_varnames, scope);
|
|
} else {
|
|
platform::DeviceContextPool& pool =
|
|
platform::DeviceContextPool::Instance();
|
|
auto& ctx = *pool.Get(place);
|
|
|
|
distributed::RPCClient* rpc_client =
|
|
distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
|
|
|
|
std::vector<distributed::VarHandlePtr> rets;
|
|
if (use_send_handler) {
|
|
for (size_t i = 0; i < ins.size(); i++) {
|
|
if (NeedSend(scope, ins[i])) {
|
|
VLOG(3) << "sending " << ins[i] << " to " << epmap[i];
|
|
rets.push_back(
|
|
rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]));
|
|
} else {
|
|
VLOG(3) << "don't send no-initialied variable: " << ins[i];
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < ins.size(); i++) {
|
|
for (size_t j = 0; j < epmap.size(); j++) {
|
|
if (NeedSend(scope, ins[i])) {
|
|
VLOG(3) << "sending " << ins[i] << " to " << epmap[j];
|
|
rets.push_back(rpc_client->AsyncDistributeNotify(epmap[j], ctx,
|
|
scope, ins[i]));
|
|
} else {
|
|
VLOG(3) << "don't send no-initialied variable: " << ins[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (size_t i = 0; i < rets.size(); i++) {
|
|
VLOG(7) << "before sync_send " << ins[i] << "from " << epmap[i];
|
|
PADDLE_ENFORCE_NE(
|
|
rets[i]->Wait(), 0U,
|
|
platform::errors::ExecutionTimeout("internal error in RPCClient"));
|
|
VLOG(7) << "after sync_send " << ins[i] << "from " << epmap[i];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
class SendOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() {
|
|
AddInput("X", "(Tensor, SelectedRows) Input variables to be sent")
|
|
.AsDuplicable();
|
|
AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
|
|
.AsDuplicable();
|
|
AddComment(R"DOC(
|
|
Send operator
|
|
|
|
This operator will send variables to listen_and_serve op at the parameter server.
|
|
)DOC");
|
|
AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
|
|
AddAttr<std::vector<std::string>>("endpoints",
|
|
"(string vector, default 127.0.0.1:6164)"
|
|
"Server endpoints in the order of input "
|
|
"variables for mapping")
|
|
.SetDefault({"127.0.0.1:6164"});
|
|
AddAttr<std::vector<int64_t>>("sections",
|
|
"(vector<int>) "
|
|
"the length of each output along the "
|
|
"specified axis.")
|
|
.SetDefault(std::vector<int64_t>{});
|
|
AddAttr<std::vector<std::string>>(
|
|
"send_varnames",
|
|
"(vector<string>) "
|
|
"the split output varnames to send to pserver")
|
|
.SetDefault(std::vector<std::string>{});
|
|
AddAttr<int>("num",
|
|
"(int, default 0)"
|
|
"Number of sub-tensors. This must evenly divide "
|
|
"Input.dims()[axis]")
|
|
.SetDefault(0);
|
|
AddAttr<bool>("merge_add",
|
|
"(bool, default 0)"
|
|
"merge method, true represent add, false represent average")
|
|
.SetDefault(false);
|
|
AddAttr<bool>(
|
|
"use_send_handler",
|
|
"(bool, default 1)"
|
|
"if it's true, use send handler, other wise, use notify handler")
|
|
.SetDefault(true);
|
|
}
|
|
};
|
|
|
|
class SendOpShapeInference : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext* ctx) const override {}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(
|
|
send, ops::SendOp,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
|
|
ops::SendOpMaker, ops::SendOpShapeInference);
|