You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/tracer.cc

344 lines
12 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/tracer.h"
#include <memory>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace imperative {
void CreateGradOp(const framework::OpDesc& op_desc,
const std::unordered_set<std::string>& no_grad_set,
const std::vector<framework::BlockDesc*>& grad_sub_block,
std::vector<framework::OpDesc*>* grad_op_descs,
std::unordered_map<std::string, std::string>* grad_to_var) {
PADDLE_ENFORCE(grad_op_descs->empty());
const framework::OpInfo& op_info =
framework::OpInfoMap::Instance().Get(op_desc.Type());
if (!op_info.grad_op_maker_) return;
std::vector<std::unique_ptr<framework::OpDesc>> descs =
op_info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
for (auto& desc : descs) {
grad_op_descs->emplace_back(desc.release());
}
}
void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base");
PADDLE_ENFORCE_NOT_NULL(dev_ctx,
"Could not get valid device from forward op");
if (var->grads_ == nullptr) {
auto& var_t = var->var_->Get<framework::LoDTensor>();
var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32,
framework::vectorize(var_t.dims()),
dev_ctx->GetPlace(), true, false);
auto grad_t = var->grads_->var_->GetMutable<framework::LoDTensor>();
operators::math::set_constant(*dev_ctx, grad_t, 0.0);
}
}
platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
platform::Place result = place;
for (auto it : inputs) {
for (VarBase* var : it.second) {
platform::Place tmp_place =
var->var_->Get<framework::LoDTensor>().place();
if (!platform::is_same_place(tmp_place, result)) {
PADDLE_THROW(
"Input variable should keep in the same place: %s, but get place: "
"%s of input %s instead",
result, tmp_place, it.first);
}
}
}
return result;
}
framework::VariableNameMap CreateInputVarNameMap(
const OpBase* op, const VarBasePtrMap& varbase_map) {
framework::VariableNameMap result;
auto& info_map = framework::OpInfoMap::Instance();
auto* op_info = info_map.GetNullable(op->Type());
if (op_info == nullptr || op_info->proto_ == nullptr) {
return result;
}
for (auto& in : op_info->Proto().inputs()) {
auto it = varbase_map.find(in.name());
if (it == varbase_map.end()) {
PADDLE_ENFORCE(in.dispensable());
result[in.name()] = {};
} else {
auto var_vector = it->second;
std::vector<std::string> args;
args.reserve(var_vector.size());
for (VarBase* var_base : var_vector) {
args.emplace_back(var_base->Name());
}
result[in.name()] = args;
}
}
return result;
}
framework::VariableNameMap CreateOutputVarNameMap(
const OpBase* op, const VarBasePtrMap& varbase_map) {
framework::VariableNameMap result;
auto& info_map = framework::OpInfoMap::Instance();
auto* op_info = info_map.GetNullable(op->Type());
if (op_info == nullptr || op_info->proto_ == nullptr) {
return result;
}
for (auto& out : op_info->Proto().outputs()) {
auto it = varbase_map.find(out.name());
if (it == varbase_map.end()) {
PADDLE_ENFORCE(out.dispensable());
result[out.name()] = {};
} else {
auto var_vector = it->second;
std::vector<std::string> args;
args.reserve(var_vector.size());
for (VarBase* var_base : var_vector) {
args.emplace_back(var_base->Name());
}
result[out.name()] = args;
}
}
return result;
}
Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}
std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
VarBasePtrMap* outputs,
framework::AttributeMap attrs_map,
const platform::Place expected_place,
const bool stop_gradient) {
framework::VariableValueMap invars_map;
framework::VariableValueMap outvars_map;
// Construct input_vars_map and output_vars_map
std::map<std::string, VarBase*> current_vars_map;
op->input_vars_ = inputs;
for (auto it : op->input_vars_) {
auto& invars = invars_map[it.first];
invars.reserve(it.second.size());
for (VarBase* inp : it.second) {
PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(),
inp->Name());
invars.emplace_back(inp->var_);
if (!stop_gradient) {
current_vars_map[inp->Name()] = inp;
}
VLOG(3) << "input var name: " << inp->Name()
<< " inited: " << inp->var_->IsInitialized()
<< " stop_grad: " << inp->IsStopGradient();
}
op->TrackPreOp(it.first, it.second);
}
op->output_vars_ = *outputs;
for (auto it : op->output_vars_) {
auto& outvars = outvars_map[it.first];
const std::vector<VarBase*>& outputs = it.second;
outvars.reserve(outputs.size());
for (size_t i = 0U; i < outputs.size(); ++i) {
VarBase* out = outputs[i];
outvars.emplace_back(out->var_);
out->TrackPreOp(op, it.first, i, stop_gradient);
if (!stop_gradient) {
current_vars_map[out->Name()] = out;
}
VLOG(3) << "input var name: " << out->Name()
<< " inited: " << out->var_->IsInitialized()
<< " stop_grad: " << out->IsStopGradient();
}
}
// Check attrs and create op
framework::VariableNameMap invars_name_map =
CreateInputVarNameMap(op, inputs);
framework::VariableNameMap outvars_name_map =
CreateOutputVarNameMap(op, *outputs);
auto& info = framework::OpInfoMap::Instance().Get(op->Type());
if (info.Checker() != nullptr) {
info.Checker()->Check(&attrs_map);
}
std::unique_ptr<framework::OperatorBase> op_base =
framework::OpRegistry::CreateOp(op->Type(), invars_name_map,
outvars_name_map, attrs_map);
if (info.infer_var_type_) {
RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, outputs, &attrs_map);
info.infer_var_type_(&infer_var_type_ctx);
}
// TODO(minqiyang): Support infer var type in imperative mode
// Run forward op
VLOG(3) << "tracer running " << op->Type();
framework::RuntimeContext ctx(invars_map, outvars_map);
// TODO(panyx0718): Cache p.
framework::OperatorWithKernel* op_kernel =
dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
framework::Scope scope;
op->place_ = GetExpectedPlace(expected_place, inputs);
PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
prepared_op.func(
framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
prepared_op.ctx, prepared_op.kernel_configs));
// construct backward op
std::set<std::string> vars_saved_for_backward;
if (!stop_gradient) {
VLOG(5) << "start construct backward op";
// construct grad op descs
op->attrs_ = attrs_map;
std::unique_ptr<framework::OpDesc> fwd_op_desc(new framework::OpDesc(
op->Type(), invars_name_map, outvars_name_map, attrs_map));
std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
new std::unordered_map<std::string, std::string>());
// NOTE(minqiyang): We don't support control flow op in imperative now
// Add grad_block_ when we want to support it
CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get());
VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type();
const size_t grad_op_count = op->grad_op_descs_.size();
op->grad_input_vars_.resize(grad_op_count);
op->grad_output_vars_.resize(grad_op_count);
for (size_t i = 0; i < grad_op_count; ++i) {
framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
for (auto it : grad_op_desc->Inputs()) {
auto& grad_in_vars = op->grad_input_vars_[i][it.first];
grad_in_vars.reserve(it.second.size());
for (const std::string& grad_invar : it.second) {
auto var_it = grad_to_var->find(grad_invar);
if (var_it == grad_to_var->end()) {
auto fwd_var_it = current_vars_map.find(grad_invar);
PADDLE_ENFORCE(fwd_var_it != current_vars_map.end());
// Forward inputs or outputs.
grad_in_vars.emplace_back(fwd_var_it->second);
} else {
VarBase* var = current_vars_map[var_it->second];
InitGrad(var, prepared_op.GetDeviceContext());
// Douts.
grad_in_vars.emplace_back(var->grads_);
}
vars_saved_for_backward.insert(it.first);
}
}
for (auto it : grad_op_desc->Outputs()) {
auto& grad_out_vars = op->grad_output_vars_[i][it.first];
for (const std::string& grad_outvar : it.second) {
auto var_it = grad_to_var->find(grad_outvar);
PADDLE_ENFORCE(var_it != grad_to_var->end(),
"Could not found the grad op output var, should this "
"operator %s's stop gradient be True",
op->Type());
VarBase* var = current_vars_map[var_it->second];
InitGrad(var, prepared_op.GetDeviceContext());
grad_out_vars.push_back(var->grads_);
VLOG(3) << "grads output var name: " << var->name_;
}
}
}
}
return vars_saved_for_backward;
}
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
const std::vector<VarBase*>& inputs,
bool stop_gradient) {
VLOG(3) << "py_trace " << op->Type();
op->input_vars_[PyLayer::kFwdInp] = inputs;
std::vector<framework::Variable*> ret_vars =
PyLayer::Apply(op->forward_id_, inputs);
op->TrackPreOp(PyLayer::kFwdInp, inputs);
std::vector<VarBase*>& outputs = op->output_vars_[PyLayer::kFwdOut];
outputs.reserve(ret_vars.size());
for (size_t i = 0U; i != ret_vars.size(); ++i) {
framework::Variable* v = ret_vars[i];
VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), v,
nullptr, stop_gradient);
outputs.emplace_back(out);
out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
}
if (!stop_gradient) {
VLOG(5) << "start construct backward op";
op->grad_input_vars_.resize(1);
op->grad_output_vars_.resize(1);
auto& grad_input_vars =
op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
auto& grad_output_vars =
op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
for (VarBase* inp : inputs) {
grad_input_vars.push_back(inp);
}
for (VarBase* out : outputs) {
grad_input_vars.push_back(out);
}
// TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
platform::CPUPlace place;
for (VarBase* out : outputs) {
InitGrad(out, platform::DeviceContextPool::Instance().Get(place));
grad_input_vars.push_back(out->grads_);
}
for (VarBase* inp : inputs) {
InitGrad(inp, platform::DeviceContextPool::Instance().Get(place));
grad_output_vars.push_back(inp->grads_);
}
}
return outputs;
}
} // namespace imperative
} // namespace paddle