You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/op_test.py

1266 lines
54 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import warnings
import numpy as np
import random
import six
import time
import itertools
import collections
from collections import defaultdict
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, OpProtoHolder, Variable
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from paddle.fluid import unique_name
def _set_use_system_allocator(value=None):
USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
value = old_value if value is None else value
core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
return old_value
def randomize_probability(batch_size, class_num, dtype='float32'):
prob = np.random.uniform(
0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
prob_sum = prob.sum(axis=1)
for i in six.moves.xrange(len(prob)):
prob[i] /= prob_sum[i]
return prob
def get_numeric_gradient(place,
scope,
op,
inputs,
input_to_check,
output_names,
delta=0.005,
in_place=False):
# FIXME: change this method by compile time concepts
set_input(scope, op, inputs, place)
def product(dim):
return six.moves.reduce(lambda a, b: a * b, dim, 1)
tensor_to_check = scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.shape())
tensor_to_check_dtype = tensor_to_check._dtype()
if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
tensor_to_check_dtype = np.float32
elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
tensor_to_check_dtype = np.float64
elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
tensor_to_check_dtype = np.float16
# set delta as np.float16, will automatic convert to float32, float64
delta = np.array(delta).astype(np.float16)
else:
raise ValueError("Not supported data type " + str(
tensor_to_check_dtype))
def get_output():
sum = []
op.run(scope, place)
for output_name in output_names:
sum.append(
np.array(scope.find_var(output_name).get_tensor()).astype(
tensor_to_check_dtype).mean())
return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))
gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)
def __get_elem__(tensor, i):
if tensor_to_check_dtype == np.float16:
numpy_tensor = np.array(tensor).astype(np.float16)
numpy_tensor = numpy_tensor.flatten()
return numpy_tensor[i]
elif tensor_to_check_dtype == np.float32:
return tensor._get_float_element(i)
else:
return tensor._get_double_element(i)
def __set_elem__(tensor, i, e):
if tensor_to_check_dtype == np.float16:
numpy_tensor = np.array(tensor).astype(np.float16)
shape = numpy_tensor.shape
numpy_tensor = numpy_tensor.flatten()
numpy_tensor[i] = e
numpy_tensor = numpy_tensor.reshape(shape)
tensor.set(numpy_tensor, place)
elif tensor_to_check_dtype == np.float32:
tensor._set_float_element(i, e)
else:
tensor._set_double_element(i, e)
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in six.moves.xrange(tensor_size):
if in_place:
set_input(scope, op, inputs, place)
# get one input element throw it's index i.
origin = __get_elem__(tensor_to_check, i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
__set_elem__(tensor_to_check, i, x_pos)
y_pos = get_output()
if in_place:
set_input(scope, op, inputs, place)
x_neg = origin - delta
__set_elem__(tensor_to_check, i, x_neg)
y_neg = get_output()
__set_elem__(tensor_to_check, i, origin)
gradient_flat[i] = (y_pos - y_neg) / delta / 2
return gradient_flat.reshape(tensor_to_check.shape())
class OpTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
'''Fix random seeds to remove randomness from tests'''
cls._np_rand_state = np.random.get_state()
cls._py_rand_state = random.getstate()
cls.call_once = False
cls.dtype = "float32"
cls.outputs = {}
np.random.seed(123)
random.seed(124)
cls._use_system_allocator = _set_use_system_allocator(True)
@classmethod
def tearDownClass(cls):
"""Restore random seeds"""
np.random.set_state(cls._np_rand_state)
random.setstate(cls._py_rand_state)
_set_use_system_allocator(cls._use_system_allocator)
def try_call_once(self, data_type):
if not self.call_once:
self.call_once = True
self.dtype = data_type
def infer_dtype_from_inputs_outputs(self, inputs, outputs):
def infer_dtype(numpy_dict):
assert isinstance(
numpy_dict,
dict), "self.inputs, self.outputs must be numpy_dict"
for var_name, var_value in six.iteritems(numpy_dict):
if isinstance(var_value, (np.ndarray, np.generic)):
self.try_call_once(var_value.dtype)
elif isinstance(var_value, (list, tuple)):
# the case of self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
if len(var_value) > 1 and isinstance(var_value[1], (
np.ndarray, np.generic)):
instance = var_value[1]
self.try_call_once(instance[1].dtype)
else:
self.try_call_once("float32")
infer_dtype(inputs)
infer_dtype(outputs)
def feed_var(self, input_vars, place):
feed_map = {}
for var_name in input_vars:
if isinstance(input_vars[var_name], list):
for name, np_value in self.inputs[var_name]:
tensor = core.LoDTensor()
if isinstance(np_value, tuple):
tensor.set(np_value[0], place)
tensor.set_recursive_sequence_lengths(np_value[1])
else:
tensor.set(np_value, place)
feed_map[name] = tensor
else:
tensor = core.LoDTensor()
if isinstance(self.inputs[var_name], tuple):
tensor.set(self.inputs[var_name][0], place)
tensor.set_recursive_sequence_lengths(self.inputs[var_name][
1])
else:
tensor.set(self.inputs[var_name], place)
feed_map[var_name] = tensor
return feed_map
def _append_ops(self, block):
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
"infer datatype from inputs and outputs for this test case"
self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
inputs = append_input_output(block, op_proto, self.inputs, True,
self.dtype)
outputs = append_input_output(block, op_proto, self.outputs, False,
self.dtype)
if hasattr(self, "cache_name_list"):
for name in self.cache_name_list:
inputs[name] = block.create_var(
name=name,
persistable=True,
type=core.VarDesc.VarType.RAW,
stop_gradient=True)
op = block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=self.attrs if hasattr(self, "attrs") else dict())
# infer variable type and infer shape in compile-time
op.desc.infer_var_type(block.desc)
op.desc.infer_shape(block.desc)
return op
def _get_io_vars(self, block, numpy_inputs):
inputs = {}
for name, value in six.iteritems(numpy_inputs):
if isinstance(value, list):
var_list = [
block.var(sub_name) for sub_name, sub_value in value
]
inputs[name] = var_list
else:
inputs[name] = block.var(name)
return inputs
def _get_inputs(self, block):
return self._get_io_vars(block, self.inputs)
def _get_outputs(self, block):
return self._get_io_vars(block, self.outputs)
def calc_output(self, place):
outs, _ = self._calc_output(place)
return outs
def _create_var_from_numpy(self, value):
if isinstance(value, tuple):
data = value[0]
lod = value[1]
v = fluid.dygraph.base.to_variable(value=data)
v._ivar.value().get_tensor().set_recursive_sequence_lengths(lod)
return v
else:
return fluid.dygraph.base.to_variable(value)
def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
if_return_inputs_grad_dict, block):
def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
np_value_temp = np_value
has_lod = False
lod_temp = None
if isinstance(np_value, tuple):
np_value_temp = np_value[0]
has_lod = True
lod_temp = np_value[1]
if is_input:
v = self._create_var_from_numpy(np_value_temp)
if if_return_inputs_grad_dict:
v.stop_gradient = False
if has_lod:
v._ivar.value().get_tensor().set_recursive_sequence_lengths(
lod_temp)
else:
v = block.create_var(
name=name,
dtype=np_value_temp.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
return v
# prepare variable for input or output
var_dict = defaultdict(list)
if if_return_inputs_grad_dict:
inputs_grad_dict = defaultdict()
proto_list = op_proto.inputs if is_input else op_proto.outputs
for var_proto in proto_list:
name = var_proto.name
if (name not in np_list) and var_proto.dispensable:
continue
if name not in np_list:
assert var_proto.intermediate, "{} not found".format(name)
v = block.create_var(
dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
var_dict[name].append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
continue
if var_proto.duplicable:
assert isinstance(
np_list[name],
list), "Duplicable {} should be set as list".format(name)
var_list = []
slot_name = name
for (name, np_value) in np_list[name]:
v = create_var(np_value, name, is_input,
if_return_inputs_grad_dict)
var_list.append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
var_dict[slot_name] = var_list
else:
nplist_value_temp = None
name_temp = None
if isinstance(np_list[name], list):
nplist_value_temp = np_list[name][0]
name_temp = name
else:
nplist_value_temp = np_list[name]
name_temp = unique_name.generate("%s_out" % (name))
v = create_var(nplist_value_temp, name_temp, is_input,
if_return_inputs_grad_dict)
var_dict[name].append(v)
if if_return_inputs_grad_dict:
inputs_grad_dict[name] = v
if if_return_inputs_grad_dict:
return var_dict, inputs_grad_dict
else:
return var_dict
def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block()
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
# prepare input variable
inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
True, False, block)
# prepare output variable
outputs = self.append_input_output_for_dygraph(
op_proto, self.outputs, False, False, block)
# prepare attrbutes
attrs_outputs = {}
if hasattr(self, "attrs"):
for attrs_name in self.attrs:
if self.attrs[attrs_name] is not None:
attrs_outputs[attrs_name] = self.attrs[attrs_name]
block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=attrs_outputs if hasattr(self, "attrs") else None)
return outputs
def _calc_output(self,
place,
parallel=False,
no_check_set=None,
loss=None,
enable_inplace=None,
for_inplace_test=None):
program = Program()
block = program.global_block()
op = self._append_ops(block)
inputs = self._get_inputs(block)
outputs = self._get_outputs(block)
feed_map = self.feed_var(inputs, place)
if for_inplace_test:
# Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
# and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
# Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
# since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
for out_name in op.output_arg_names:
var = block.var(out_name)
if 0 in var.shape:
var.persistable = True
original_program = program
if parallel:
use_cuda = False
if isinstance(place, fluid.CUDAPlace):
use_cuda = True
compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
loss_name=loss.name if loss else None, places=place)
program = compiled_prog
fetch_list = getattr(self, "fetch_list", [])
# if the fetch_list is customized by user, we use it directly.
# if not, fill the fetch_list by the user configured outputs in test.
if len(fetch_list) == 0:
for var_name, var in six.iteritems(outputs):
if no_check_set is not None and var_name in no_check_set:
continue
if isinstance(var, list):
for v in var:
fetch_list.append(v.name)
else:
fetch_list.append(var.name)
# if the fetch_list still empty, fill the fetch_list by the operator output.
if len(fetch_list) == 0:
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
fetch_list.append(str(out_name))
if enable_inplace is not None:
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = enable_inplace
compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
build_strategy=build_strategy, places=place)
program = compiled_prog
executor = Executor(place)
outs = executor.run(program,
feed=feed_map,
fetch_list=fetch_list,
return_numpy=False)
self.op = op
self.program = original_program
if for_inplace_test:
return outs, fetch_list, feed_map, original_program, op.desc
else:
return outs, fetch_list
def _compare_expect_and_actual_outputs(self,
place,
fetch_list,
expect_outs,
actual_outs,
inplace_atol=None):
"""Compare expect outs and actual outs of an tested op.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fetch_list (list): The outputs of tested op.
expect_outs (list): The expect outs of tested op.
actual_outs (list): The actual outs of tested op.
inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.
Returns:
None.
"""
# compare expect_outs and actual_outs
for i, name in enumerate(fetch_list):
if inplace_atol is not None:
self.assertTrue(
np.allclose(
np.array(expect_outs[i]),
np.array(actual_outs[i]),
atol=inplace_atol),
"Output (" + name + ") has diff at " + str(place) +
" when using and not using inplace" + "\nExpect " +
str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
+ " in class " + self.__class__.__name__)
else:
self.assertTrue(
np.array_equal(
np.array(expect_outs[i]), np.array(actual_outs[i])),
"Output (" + name + ") has diff at " + str(place) +
" when using and not using inplace" + "\nExpect " +
str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
+ " in class " + self.__class__.__name__ + '\n')
def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
op_grad_to_var):
"""Generate grad_program which contains the grad_op.
Args:
fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
grad_op_desc (OpDesc): The OpDesc of grad op.
op_grad_to_var (dict): The relation of variables in grad op and its forward op.
Returns:
grad_program (program): The program which contains the grad_op.
"""
grad_program = Program()
grad_block = grad_program.global_block()
new_op_desc = grad_block.desc.append_op()
new_op_desc.copy_from(grad_op_desc)
grad_program._sync_with_cpp()
# Create grad vars based on fwd vars (shape and dtype)
for arg in grad_op_desc.input_arg_names(
) + grad_op_desc.output_arg_names():
fwd_var_name = op_grad_to_var.get(arg, None)
if fwd_var_name is None:
fwd_var_name = arg
fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
assert fwd_var is not None, "{} cannot be found".format(
fwd_var_name)
grad_var = grad_block.create_var(
name=arg,
dtype=fwd_var.dtype,
shape=fwd_var.shape,
type=fwd_var.type,
persistable=False)
# Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
# and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
# Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
# since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
if 0 in grad_var.shape:
grad_var.persistable = True
grad_program._sync_with_cpp()
return grad_program
def _construct_grad_feed_map_from_forward(self, place, fwd_res,
grad_op_desc, op_grad_to_var):
"""Generate grad_feed_map for grad_program.
since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
we use fwd outs (also inputs sometimes) to construct grad inputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
grad_op_desc (OpDesc): The OpDesc of grad op.
op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
Returns:
grad_feed_map (dict): The feed_map of grad_op.
"""
fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
p = core.Place()
p.set_place(place)
grad_feed_map = {}
for arg in grad_op_desc.input_arg_names():
if arg in fwd_feed_map.keys():
grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
else:
fwd_var_name = op_grad_to_var.get(arg, None)
if fwd_var_name is None:
fwd_var_name = arg
for i, out_name in enumerate(fwd_fetch_list):
if out_name == fwd_var_name:
# don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
# get them from global_scope directly since we have set them persistable in fwd execution
if 0 in fwd_program.global_block().var(out_name).shape:
continue
else:
grad_feed_map[arg] = fwd_outs[i]._copy(p)
return grad_feed_map
def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
"""Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
An op needs to run druing inplace check if,
(1) it has infer_inplace,
(2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
Args:
op_desc (OpDesc): The op_desc of current op.
fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
Returns:
need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
"""
need_run_ops = []
visited_ops = []
def _dfs_grad_op(op_desc, fwd_op_desc=None):
visited_ops.append(op_desc.type())
has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
has_infer_inplace_in_grad_descendants = False
if not has_grad_op_maker:
has_infer_inplace_in_descendants = False
else:
# get grad_op_desc
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
op_desc, set(), [])
if not grad_op_desc_list:
has_infer_inplace_in_grad_descendants = False
else:
for i, grad_op_desc in enumerate(grad_op_desc_list):
if grad_op_desc.type(
) not in visited_ops and _dfs_grad_op(
grad_op_desc, fwd_op_desc=op_desc):
has_infer_inplace_in_grad_descendants = True
if has_infer_inplace or has_infer_inplace_in_grad_descendants:
need_run_ops.append((op_desc, fwd_op_desc))
return True
else:
return False
_dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
return need_run_ops
def _check_forward_inplace(self,
place,
no_check_set=None,
inplace_atol=None):
"""Chech the inplace correctness of given op (self.op_type).
Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
We return this to construct grad_program and grad_feed_map for grad inplace check.
"""
# _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
expect_res = self._calc_output(
place,
no_check_set=no_check_set,
enable_inplace=False,
for_inplace_test=True)
actual_res = self._calc_output(
place,
no_check_set=no_check_set,
enable_inplace=True,
for_inplace_test=True)
# compare expect_outs and actual_outs
self._compare_expect_and_actual_outputs(
place,
expect_res[1],
expect_res[0],
actual_res[0],
inplace_atol=inplace_atol)
return expect_res
def _calc_grad_output(self,
place,
fwd_res,
grad_op_desc,
enable_inplace=None):
"""Calculate grad_output for given grad_op_desc.
since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
we use fwd outs (also inputs sometimes) to construct grad inputs.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
grad_op_desc (OpDesc): The OpDesc of grad op.
enable_inplace (bool): Enable inplace or not.
Returns:
res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
"""
fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
set(), [])
grad_program = self._construct_grad_program_from_forward(
fwd_program, grad_op_desc, op_grad_to_var)
grad_feed_map = self._construct_grad_feed_map_from_forward(
place, fwd_res, grad_op_desc, op_grad_to_var)
grad_fetch_list = grad_op_desc.output_arg_names()
exe = Executor(place)
program = grad_program
if enable_inplace is not None:
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = enable_inplace
compiled_program = fluid.CompiledProgram(
grad_program).with_data_parallel(
loss_name="", build_strategy=build_strategy, places=place)
program = compiled_program
outs = exe.run(program,
feed=grad_feed_map,
fetch_list=grad_fetch_list,
return_numpy=False)
return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc
def _check_grad_inplace(self,
place,
fwd_res,
grad_op_desc,
inplace_atol=None):
"""Chech the inplace correctness of given grad_op_desc.
Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
It works like _check_forward_inplace, but the way to construct program and feed_map differs.
So we define a new function for grad, grad_grad, etc.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
grad_op_desc (OpDesc): The OpDesc of grad op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
We return this to construct grad_program and grad_feed_map for grad inplace check.
"""
expect_res = self._calc_grad_output(
place, fwd_res, grad_op_desc, enable_inplace=False)
actual_res = self._calc_grad_output(
place, fwd_res, grad_op_desc, enable_inplace=True)
self._compare_expect_and_actual_outputs(
place,
expect_res[1],
expect_res[0],
actual_res[0],
inplace_atol=inplace_atol)
return expect_res
def check_inplace_output_with_place(self,
place,
no_check_set=None,
inplace_atol=None):
"""Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.
(1) Get all ops need to run. (see conditions in _get_need_run_ops())
(2) Run op in need_run_ops, and do inplace check if it has infer_inplace.
Args:
place (CPUPlace | CUDAPlace): The place where the op runs.
no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.
Returns:
None
"""
has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)
fwd_res = self._calc_output(
place, no_check_set=no_check_set, for_inplace_test=True)
op_desc = fwd_res[4]
need_run_ops = self._get_need_run_ops(op_desc)
res = {}
for op_desc, father_op_desc in reversed(need_run_ops):
# The first one is the forward op
has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
if op_desc.type() == self.op_type:
if has_infer_inplace:
res[op_desc] = self._check_forward_inplace(
place,
no_check_set=no_check_set,
inplace_atol=inplace_atol)
else:
res[op_desc] = self._calc_output(
place, no_check_set=no_check_set, for_inplace_test=True)
else:
# TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
# skip op that use_mkldnn and use_ngraph currently
flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
attrs_use_mkldnn = hasattr(
self,
'attrs') and bool(self.attrs.get('use_mkldnn', False))
if flags_use_mkldnn or attrs_use_mkldnn:
warnings.warn(
"check inplace_grad for ops using mkldnn is not supported"
)
continue
use_ngraph = fluid.core.is_compiled_with_ngraph(
) and fluid.core.globals()["FLAGS_use_ngraph"]
if use_ngraph:
warnings.warn(
"check inplace_grad for ops using ngraph is not supported"
)
continue
if has_infer_inplace:
fwd_res = res[father_op_desc]
res[op_desc] = self._check_grad_inplace(
place, fwd_res, op_desc, inplace_atol=inplace_atol)
else:
res[op_desc] = self._calc_grad_output(place, fwd_res,
op_desc)
def check_output_with_place(self,
place,
atol,
no_check_set=None,
equal_nan=False,
check_dygraph=True,
inplace_atol=None):
if check_dygraph:
dygraph_outs = self._calc_dygraph_output(
place, no_check_set=no_check_set)
outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
if out_name not in self.outputs:
continue
if no_check_set is not None and out_name in no_check_set:
continue
def find_imperative_actual(target_name, dygraph_outs, place):
with fluid.dygraph.base.guard(place=place):
for name in dygraph_outs:
if name == target_name:
return dygraph_outs[name][0]
var_list = dygraph_outs[name]
for i, var in enumerate(var_list):
if var.name == target_name:
return dygraph_outs[name][i]
self.assertTrue(False, "Found failed {} {}".format(
dygraph_outs.keys(), target_name))
def find_actual(target_name, fetch_list):
found = [
i for i, var_name in enumerate(fetch_list)
if var_name == target_name
]
self.assertTrue(
len(found) == 1, "Found {} {}".format(
len(found), target_name))
return found[0]
if out_dup:
sub_out = self.outputs[out_name]
if not isinstance(sub_out, list):
raise AssertionError("sub_out type %s is not list",
type(sub_out))
for item in sub_out:
sub_out_name, expect = item[0], item[1]
if check_dygraph:
imperative_actual = find_imperative_actual(
sub_out_name, dygraph_outs, place)
imperative_actual_t = np.array(
imperative_actual._ivar.value().get_tensor())
idx = find_actual(sub_out_name, fetch_list)
actual = outs[idx]
actual_t = np.array(actual)
expect_t = expect[0] \
if isinstance(expect, tuple) else expect
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol, equal_nan=equal_nan),
"Output (" + sub_out_name + ") has diff at " +
str(place))
if check_dygraph:
self.assertTrue(
np.allclose(
imperative_actual_t,
expect_t,
atol=atol,
equal_nan=equal_nan),
"Output (" + sub_out_name + ") has diff at " +
str(place) + " in dygraph mode")
if isinstance(expect, tuple):
self.assertListEqual(
actual.recursive_sequence_lengths(), expect[1],
"Output (" + sub_out_name +
") has different lod at " + str(place))
if check_dygraph:
self.assertListEqual(
imperative_actual._ivar.value().get_tensor()
.recursive_sequence_lengths(), expect[1],
"Output (" + out_name +
") has different lod at " + str(place) +
" in dygraph mode")
else:
if check_dygraph:
imperative_actual = find_imperative_actual(
out_name, dygraph_outs, place)
imperative_actual_t = np.array(
imperative_actual._ivar.value().get_tensor())
idx = find_actual(out_name, fetch_list)
actual = outs[idx]
actual_t = np.array(actual)
expect = self.outputs[out_name]
expect_t = expect[0] if isinstance(expect, tuple) else expect
self.assertTrue(
np.allclose(
actual_t, expect_t, atol=atol, equal_nan=equal_nan),
"Output (" + out_name + ") has diff at " + str(place) +
"\nExpect " + str(expect_t) + "\n" + "But Got" +
str(actual_t) + " in class " + self.__class__.__name__)
if check_dygraph:
if six.moves.reduce(
lambda x, y: x * y, imperative_actual_t.shape,
1) == 0 and six.moves.reduce(
lambda x, y: x * y, expect_t.shape, 1) == 0:
pass
else:
self.assertTrue(
np.allclose(
imperative_actual_t,
expect_t,
atol=atol,
equal_nan=equal_nan),
"Output (" + out_name + ") has diff at " +
str(place) + "\nExpect " + str(expect_t) + "\n" +
"But Got" + str(imperative_actual_t) + " in class "
+ self.__class__.__name__)
if isinstance(expect, tuple):
self.assertListEqual(actual.recursive_sequence_lengths(),
expect[1], "Output (" + out_name +
") has different lod at " + str(place))
if check_dygraph:
self.assertListEqual(
imperative_actual._ivar.value().get_tensor()
.recursive_sequence_lengths(), expect[1],
"Output (" + out_name + ") has different lod at " +
str(place) + " in dygraph mode")
# inplace_atol only used when op doesn't ensure computational consistency
if inplace_atol is not None:
warnings.warn(
"By default, inplace_atol should not be set, please check it")
# Check inplace for given op, its grad op, its grad_grad op, etc.
# No effect on original OpTest
self.check_inplace_output_with_place(
place, no_check_set=no_check_set, inplace_atol=inplace_atol)
if check_dygraph:
return outs, dygraph_outs, fetch_list
else:
return outs, fetch_list
def check_compile_vs_runtime(self, fetch_list, fetch_outs):
def find_fetch_index(target_name, fetch_list):
found = [
i for i, var_name in enumerate(fetch_list)
if var_name == target_name
]
if len(found) == 0:
return -1
else:
self.assertTrue(
len(found) == 1,
"Found {} {}".format(len(found), target_name))
return found[0]
for name in self.op.desc.output_names():
var_names = self.op.desc.output(name)
for var_name in var_names:
i = find_fetch_index(var_name, fetch_list)
if i == -1:
# The output is dispensiable or intermediate.
break
out = fetch_outs[i]
if isinstance(out, core.LoDTensor):
lod_level_runtime = len(out.lod())
else:
if isinstance(out, core.LoDTensorArray):
warnings.warn(
"The check of LoDTensorArray's lod_level is not implemented now!"
)
lod_level_runtime = 0
var = self.program.global_block().var(var_name)
if var.type == core.VarDesc.VarType.LOD_TENSOR:
lod_level_compile = var.lod_level
else:
lod_level_compile = 0
self.assertEqual(
lod_level_compile, lod_level_runtime,
"The lod_level of Output (" + name +
") is different between compile-time and runtime (" +
str(lod_level_compile) + " vs " + str(lod_level_runtime) +
")")
def _get_places(self):
if self.dtype == np.float16:
if core.is_compiled_with_cuda() and core.op_support_gpu(
self.op_type):
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
return [place]
else:
return []
else:
return []
places = [fluid.CPUPlace()]
cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
use_ngraph = fluid.core.is_compiled_with_ngraph(
) and fluid.core.globals()['FLAGS_use_ngraph']
if use_ngraph:
cpu_only = True
if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
and not cpu_only:
places.append(core.CUDAPlace(0))
return places
def check_output(self,
atol=1e-5,
no_check_set=None,
equal_nan=False,
check_dygraph=True,
inplace_atol=None,
check_compile_vs_runtime=False):
places = self._get_places()
for place in places:
res = self.check_output_with_place(place, atol, no_check_set,
equal_nan, check_dygraph)
if check_dygraph:
outs, dygraph_outs, fetch_list = res
else:
outs, fetch_list = res
if check_compile_vs_runtime:
self.check_compile_vs_runtime(fetch_list, outs)
def check_output_customized(self, checker):
places = self._get_places()
for place in places:
outs = self.calc_output(place)
outs = [np.array(out) for out in outs]
outs.sort(key=len)
checker(outs)
def _assert_is_close(self, numeric_grads, analytic_grads, names,
max_relative_error, msg_prefix):
for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
abs_a = np.abs(a)
abs_a[abs_a < 1e-3] = 1
diff_mat = np.abs(a - b) / abs_a
max_diff = np.max(diff_mat)
def err_msg():
offset = np.argmax(diff_mat > max_relative_error)
return ("%s Variable %s max gradient diff %f over limit %f, "
"the first error element is %d, expected %f, but got %f"
) % (msg_prefix, name, max_diff, max_relative_error,
offset, a.flatten()[offset], b.flatten()[offset])
self.assertLessEqual(max_diff, max_relative_error, err_msg())
def check_grad(self,
inputs_to_check,
output_names,
no_grad_set=None,
numeric_grad_delta=0.005,
in_place=False,
max_relative_error=0.005,
user_defined_grads=None,
check_dygraph=True):
places = self._get_places()
for place in places:
self.check_grad_with_place(place, inputs_to_check, output_names,
no_grad_set, numeric_grad_delta,
in_place, max_relative_error,
user_defined_grads, check_dygraph)
def check_grad_with_place(self,
place,
inputs_to_check,
output_names,
no_grad_set=None,
numeric_grad_delta=0.005,
in_place=False,
max_relative_error=0.005,
user_defined_grads=None,
check_dygraph=True):
self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict()
op_outputs = self.outputs if hasattr(self, "outputs") else dict()
op_attrs = self.attrs if hasattr(self, "attrs") else dict()
cache_list = None
if hasattr(self, "cache_name_list"):
cache_list = self.cache_name_list
self.op = create_op(
self.scope,
self.op_type,
op_inputs,
op_outputs,
op_attrs,
cache_list=cache_list)
if no_grad_set is None:
no_grad_set = set()
if not type(output_names) is list:
output_names = [output_names]
numeric_grads = user_defined_grads or [
get_numeric_gradient(
place,
self.scope,
self.op,
self.inputs,
input_to_check,
output_names,
delta=numeric_grad_delta,
in_place=in_place) for input_to_check in inputs_to_check
]
analytic_grads = self._get_gradient(inputs_to_check, place,
output_names, no_grad_set)
self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
max_relative_error,
"Gradient Check On %s" % str(place))
if check_dygraph:
dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
output_names, no_grad_set)
self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
max_relative_error,
"Gradient Check On %s" % str(place))
def _find_var_in_dygraph(self, output_vars, name):
if name in output_vars:
return output_vars[name]
else:
for output_vars_index in output_vars:
for output_vars_selected in output_vars[output_vars_index]:
if output_vars_selected.name == name:
return output_vars_selected
def _get_dygraph_grad(self,
inputs_to_check,
place,
output_names,
no_grad_set=None):
with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block()
op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
# prepare input variable
inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
op_proto, self.inputs, True, True, block)
# prepare output variable
outputs = self.append_input_output_for_dygraph(
op_proto, self.outputs, False, False, block)
# prepare attrbutes
attrs_outputs = {}
if hasattr(self, "attrs"):
for attrs_name in self.attrs:
if self.attrs[attrs_name] is not None:
attrs_outputs[attrs_name] = self.attrs[attrs_name]
block.append_op(
type=self.op_type,
inputs=inputs,
outputs=outputs,
attrs=attrs_outputs if hasattr(self, "attrs") else None)
outputs_valid = {}
for output_name in output_names:
outputs_valid[output_name] = self._find_var_in_dygraph(
outputs, output_name)
if len(outputs_valid) == 1:
loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1])
for outputs_valid_key in outputs_valid:
block.append_op(
type="mean",
inputs={"X": outputs_valid[outputs_valid_key]},
outputs={"Out": [loss]},
attrs=None)
else:
avg_sum = []
for cur_loss in outputs_valid:
cur_avg_loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
block.append_op(
type="mean",
inputs={"X": outputs_valid[cur_loss]},
outputs={"Out": [cur_avg_loss]},
attrs=None)
avg_sum.append(cur_avg_loss)
loss_sum = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1])
block.append_op(
type='sum',
inputs={"X": avg_sum},
outputs={"Out": loss_sum},
attrs=None)
loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1])
block.append_op(
type='scale',
inputs={"X": loss_sum},
outputs={"Out": loss},
attrs={'scale': 1.0 / float(len(avg_sum))})
loss.backward()
fetch_list_grad = []
for inputs_to_check_name in inputs_to_check:
a = inputs_grad_dict[inputs_to_check_name].gradient()
fetch_list_grad.append(a)
return fetch_list_grad
@staticmethod
def _numpy_to_lod_tensor(np_value, lod, place):
tensor = core.LoDTensor()
tensor.set(np_value, place)
if lod is not None:
tensor.set_recursive_sequence_lengths(lod)
return tensor
@staticmethod
def np_dtype_to_fluid_dtype(input):
return input
@staticmethod
def fluid_dtype_to_np_dtype(self, dtype):
return dtype
@staticmethod
def np_value_to_fluid_value(input):
return input
def _get_gradient(self,
input_to_check,
place,
output_names,
no_grad_set,
parallel=False):
prog = Program()
block = prog.global_block()
self._append_ops(block)
loss = append_loss_ops(block, output_names)
param_grad_list = append_backward(
loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)
inputs = self._get_inputs(block)
feed_dict = self.feed_var(inputs, place)
fetch_list = [g for p, g in param_grad_list]
if parallel:
use_cuda = False
if isinstance(place, fluid.CUDAPlace):
use_cuda = True
compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
loss_name=loss.name, places=place)
prog = compiled_prog
executor = fluid.Executor(place)
return list(
map(np.array,
executor.run(prog, feed_dict, fetch_list, return_numpy=False)))