You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.2 KiB
178 lines
6.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
class TestScatterOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
index_np = np.array([1, 2]).astype("int32")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = updates_np
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
class TestScatterOp0(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
index_np = np.array([1, 2]).astype("int32")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = updates_np
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.attrs = {'overwrite': True}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
class TestScatterOp1(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
zeros_np = np.zeros([2, 3]).astype('float32')
|
|
index_np = np.array([1, 1]).astype("int32")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = zeros_np
|
|
for i in range(0, len(index_np)):
|
|
output_np[index_np[i]] += updates_np[i]
|
|
self.attrs = {'overwrite': False}
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestScatterOp2(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
index_np = np.array([1, 2]).astype("int32")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = updates_np
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
def test_check_grad(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_grad_with_place(place, ['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestScatterOp3(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
zeros_np = np.zeros([2, 3]).astype('float32')
|
|
index_np = np.array([1, 1]).astype("int32")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = zeros_np
|
|
for i in range(0, len(index_np)):
|
|
output_np[index_np[i]] += updates_np[i]
|
|
self.attrs = {'overwrite': False}
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
def test_check_grad(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_grad_with_place(place, ['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
class TestScatterOp4(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
index_np = np.array([1, 2]).astype("int64")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = updates_np
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestScatterOp5(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "scatter"
|
|
ref_np = np.ones((3, 3)).astype("float32")
|
|
index_np = np.array([1, 2]).astype("int64")
|
|
updates_np = np.random.random((2, 3)).astype("float32")
|
|
output_np = np.copy(ref_np)
|
|
output_np[index_np] = updates_np
|
|
self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
|
|
self.outputs = {'Out': output_np}
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
def test_check_grad(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
self.check_grad_with_place(place, ['Updates'], 'Out', in_place=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|