You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
947 lines
33 KiB
947 lines
33 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/device_worker.h"
|
|
#include "paddle/fluid/framework/device_worker_factory.h"
|
|
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
|
|
#include "paddle/fluid/platform/cpu_helper.h"
|
|
#include "paddle/fluid/string/string_helper.h"
|
|
|
|
#if defined _WIN32 || defined __APPLE__
|
|
#else
|
|
#define _LINUX
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
void DownpourWorker::Initialize(const TrainerDesc& desc) {
|
|
param_ = desc.downpour_param();
|
|
for (int i = 0; i < param_.sparse_table_size(); ++i) {
|
|
uint64_t table_id =
|
|
static_cast<uint64_t>(param_.sparse_table(i).table_id());
|
|
TableParameter table = param_.sparse_table(i);
|
|
sparse_key_names_[table_id].resize(table.sparse_key_name_size());
|
|
for (int j = 0; j < table.sparse_key_name_size(); ++j) {
|
|
sparse_key_names_[table_id][j] = table.sparse_key_name(j);
|
|
}
|
|
sparse_value_names_[table_id].resize(table.sparse_value_name_size());
|
|
for (int j = 0; j < table.sparse_value_name_size(); ++j) {
|
|
sparse_value_names_[table_id][j] = table.sparse_value_name(j);
|
|
}
|
|
sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
|
|
for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
|
|
sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
|
|
}
|
|
label_var_name_[table_id] = table.label_var_name();
|
|
sparse_push_keys_[table_id] = std::vector<uint64_t>();
|
|
}
|
|
|
|
for (int i = 0; i < param_.dense_table_size(); ++i) {
|
|
uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
|
|
auto table = param_.dense_table(i);
|
|
dense_value_names_[table_id].resize(table.dense_value_name_size());
|
|
for (int j = 0; j < table.dense_value_name_size(); ++j) {
|
|
dense_value_names_[table_id][j] = table.dense_value_name(j);
|
|
}
|
|
dense_grad_names_[table_id].resize(table.dense_grad_name_size());
|
|
for (int j = 0; j < table.dense_grad_name_size(); ++j) {
|
|
dense_grad_names_[table_id][j] = table.dense_grad_name(j);
|
|
}
|
|
}
|
|
|
|
skip_ops_.resize(param_.skip_ops_size());
|
|
for (int i = 0; i < param_.skip_ops_size(); ++i) {
|
|
skip_ops_[i] = param_.skip_ops(i);
|
|
}
|
|
|
|
for (int i = 0; i < param_.stat_var_names_size(); ++i) {
|
|
stat_var_name_map_[param_.stat_var_names(i)] = 1;
|
|
}
|
|
|
|
need_to_push_sparse_ = param_.push_sparse();
|
|
need_to_push_dense_ = param_.push_dense();
|
|
|
|
fleet_ptr_ = FleetWrapper::GetInstance();
|
|
fetch_config_ = desc.fetch_config();
|
|
use_cvm_ = desc.use_cvm();
|
|
// for sparse value accessor, embedding only
|
|
no_cvm_ = desc.no_cvm();
|
|
scale_datanorm_ = desc.scale_datanorm();
|
|
dump_slot_ = desc.dump_slot();
|
|
adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
|
|
for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
|
|
check_nan_var_names_.push_back(desc.check_nan_var_names(i));
|
|
}
|
|
copy_table_config_ = desc.copy_table_config();
|
|
for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
|
|
uint64_t src_table = copy_table_config_.src_sparse_tables(i);
|
|
uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
|
|
VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
|
|
<< dest_table;
|
|
copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
|
|
}
|
|
for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
|
|
uint64_t src_table = copy_table_config_.src_dense_tables(i);
|
|
uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
|
|
VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
|
|
<< dest_table;
|
|
copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
|
|
}
|
|
for (auto& m : copy_table_config_.table_denpendency_map()) {
|
|
if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
|
|
// currently only support one dependency
|
|
for (auto& value : m.values()) {
|
|
table_dependency_[m.key()] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
|
|
if (no_cvm_) {
|
|
return;
|
|
}
|
|
uint64_t table_id = static_cast<uint64_t>(
|
|
param_.program_config(0).pull_sparse_table_id(table_idx));
|
|
|
|
TableParameter table;
|
|
for (auto i : param_.sparse_table()) {
|
|
if (i.table_id() == table_id) {
|
|
table = i;
|
|
break;
|
|
}
|
|
}
|
|
auto& feature = features_[table_id];
|
|
auto& feature_label = feature_labels_[table_id];
|
|
feature_label.resize(feature.size());
|
|
Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
int64_t* label_ptr = tensor->data<int64_t>();
|
|
|
|
size_t global_index = 0;
|
|
for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
|
|
VLOG(3) << "sparse_key_names_[" << i
|
|
<< "]: " << sparse_key_names_[table_id][i];
|
|
Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
|
|
if (fea_var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
|
|
CHECK(tensor != nullptr) << "tensor of var "
|
|
<< sparse_key_names_[table_id][i] << " is null";
|
|
|
|
// skip slots which do not have embedding
|
|
Variable* emb_var =
|
|
thread_scope_->FindVar(sparse_value_names_[table_id][i]);
|
|
if (emb_var == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
int64_t* ids = tensor->data<int64_t>();
|
|
size_t fea_idx = 0;
|
|
// tensor->lod()[0].size() == batch_size + 1
|
|
for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
|
|
for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
|
|
// should be skipped feasign defined in protobuf
|
|
if (ids[fea_idx] == 0u) {
|
|
continue;
|
|
}
|
|
feature_label[global_index++] =
|
|
static_cast<float>(label_ptr[lod_idx - 1]);
|
|
}
|
|
}
|
|
}
|
|
CHECK(global_index == feature.size())
|
|
<< "expect fea info size:" << feature.size() << " real:" << global_index;
|
|
}
|
|
|
|
void DownpourWorker::FillSparseValue(size_t table_idx) {
|
|
uint64_t table_id = static_cast<uint64_t>(
|
|
param_.program_config(0).pull_sparse_table_id(table_idx));
|
|
|
|
TableParameter table;
|
|
for (auto i : param_.sparse_table()) {
|
|
if (i.table_id() == table_id) {
|
|
table = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto& fea_value = feature_values_[table_id];
|
|
auto fea_idx = 0u;
|
|
|
|
std::vector<float> init_value(table.fea_dim());
|
|
for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
|
|
std::string slot_name = sparse_key_names_[table_id][i];
|
|
std::string emb_slot_name = sparse_value_names_[table_id][i];
|
|
Variable* var = thread_scope_->FindVar(slot_name);
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
|
|
int64_t* ids = tensor->data<int64_t>();
|
|
int len = tensor->numel();
|
|
Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
|
|
if (var_emb == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
|
|
float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
|
|
platform::CPUPlace());
|
|
memset(ptr, 0, sizeof(float) * len * table.emb_dim());
|
|
auto& tensor_lod = tensor->lod()[0];
|
|
LoD data_lod{tensor_lod};
|
|
tensor_emb->set_lod(data_lod);
|
|
|
|
bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
|
|
adjust_ins_weight_config_.nid_slot() == emb_slot_name);
|
|
if (is_nid) {
|
|
nid_show_.clear();
|
|
}
|
|
int nid_ins_index = 0;
|
|
|
|
for (int index = 0; index < len; ++index) {
|
|
if (use_cvm_ || no_cvm_) {
|
|
if (ids[index] == 0u) {
|
|
memcpy(ptr + table.emb_dim() * index, init_value.data(),
|
|
sizeof(float) * table.emb_dim());
|
|
if (is_nid) {
|
|
nid_show_.push_back(-1);
|
|
++nid_ins_index;
|
|
}
|
|
continue;
|
|
}
|
|
memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
|
|
sizeof(float) * table.emb_dim());
|
|
if (is_nid &&
|
|
static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
|
|
nid_show_.push_back(fea_value[fea_idx][0]);
|
|
++nid_ins_index;
|
|
}
|
|
fea_idx++;
|
|
} else {
|
|
if (ids[index] == 0u) {
|
|
memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
|
|
sizeof(float) * table.emb_dim());
|
|
if (is_nid) {
|
|
nid_show_.push_back(-1);
|
|
++nid_ins_index;
|
|
}
|
|
continue;
|
|
}
|
|
memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
|
|
sizeof(float) * table.emb_dim());
|
|
if (is_nid &&
|
|
static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
|
|
nid_show_.push_back(fea_value[fea_idx][0]);
|
|
++nid_ins_index;
|
|
}
|
|
fea_idx++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DownpourWorker::AdjustInsWeight() {
|
|
#ifdef _LINUX
|
|
// check var and tensor not null
|
|
if (!adjust_ins_weight_config_.need_adjust()) {
|
|
VLOG(0) << "need_adjust=false, skip adjust ins weight";
|
|
return;
|
|
}
|
|
Variable* nid_var =
|
|
thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
|
|
if (nid_var == nullptr) {
|
|
VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
|
|
<< " is nullptr, skip adjust ins weight";
|
|
return;
|
|
}
|
|
LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
|
|
if (nid_tensor == nullptr) {
|
|
VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
|
|
<< " is nullptr, skip adjust ins weight";
|
|
return;
|
|
}
|
|
Variable* ins_weight_var =
|
|
thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
|
|
if (ins_weight_var == nullptr) {
|
|
VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
|
|
<< " is nullptr, skip adjust ins weight";
|
|
return;
|
|
}
|
|
LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
|
|
if (ins_weight_tensor == nullptr) {
|
|
VLOG(0) << "tensor of ins weight tensor "
|
|
<< adjust_ins_weight_config_.ins_weight_slot()
|
|
<< " is nullptr, skip adjust ins weight";
|
|
return;
|
|
}
|
|
|
|
float* ins_weights = ins_weight_tensor->data<float>();
|
|
size_t len = ins_weight_tensor->numel(); // len = batch size
|
|
// here we assume nid_show slot only has one feasign in each instance
|
|
CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
|
|
<< "nid_show size, " << len << " vs "
|
|
<< nid_show_.size();
|
|
float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
|
|
float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
|
|
int64_t nid_adjw_num = 0;
|
|
double nid_adjw_weight = 0.0;
|
|
size_t ins_index = 0;
|
|
for (size_t i = 0; i < len; ++i) {
|
|
float nid_show = nid_show_[i];
|
|
VLOG(3) << "nid_show " << nid_show;
|
|
if (nid_show < 0) {
|
|
VLOG(3) << "nid_show < 0, continue";
|
|
continue;
|
|
}
|
|
float ins_weight = 1.0;
|
|
if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
|
|
ins_weight = log(M_E +
|
|
(nid_adjw_threshold - nid_show) / nid_adjw_threshold *
|
|
nid_adjw_ratio);
|
|
// count nid adjw insnum and weight
|
|
++nid_adjw_num;
|
|
nid_adjw_weight += ins_weight;
|
|
// choose large ins weight
|
|
VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
|
|
<< ins_weights[ins_index];
|
|
if (ins_weight > ins_weights[ins_index]) {
|
|
VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
|
|
ins_weights[ins_index] = ins_weight;
|
|
}
|
|
++ins_index;
|
|
}
|
|
}
|
|
VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
|
|
<< ", avg_adjw_weight: " << nid_adjw_weight;
|
|
#endif
|
|
}
|
|
|
|
void DownpourWorker::CopySparseTable() {
|
|
for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
|
|
int64_t src_table = copy_sparse_tables_[i].first;
|
|
int64_t dest_table = copy_sparse_tables_[i].second;
|
|
int32_t feanum = 0;
|
|
if (src_table == dest_table) {
|
|
continue;
|
|
} else if (!copy_table_config_.sparse_copy_by_feasign()) {
|
|
if (feasign_set_.find(src_table) == feasign_set_.end()) {
|
|
continue;
|
|
} else if (feasign_set_[src_table].size() == 0) {
|
|
continue;
|
|
}
|
|
feanum = fleet_ptr_->CopyTable(src_table, dest_table);
|
|
} else {
|
|
std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
|
|
feasign_set_[src_table].end());
|
|
feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
|
|
fea_vec.clear();
|
|
std::vector<uint64_t>().swap(fea_vec);
|
|
}
|
|
VLOG(3) << "copy feasign from table " << src_table << " to table "
|
|
<< dest_table << ", feasign num=" << feanum;
|
|
feasign_set_[src_table].clear();
|
|
std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
|
|
}
|
|
feasign_set_.clear();
|
|
}
|
|
|
|
void DownpourWorker::CopyDenseTable() {
|
|
if (thread_id_ != 0) {
|
|
return;
|
|
}
|
|
thread_local std::vector<std::future<int32_t>> pull_dense_status;
|
|
for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
|
|
uint64_t src_table = copy_dense_tables_[i].first;
|
|
uint64_t dest_table = copy_dense_tables_[i].second;
|
|
if (src_table == dest_table) {
|
|
continue;
|
|
}
|
|
int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
|
|
VLOG(3) << "copy param from table " << src_table << " to table "
|
|
<< dest_table << ", dim=" << dim;
|
|
if (copy_table_config_.dense_pull_after_copy()) {
|
|
VLOG(3) << "dense pull after copy, table=" << dest_table;
|
|
pull_dense_status.resize(0);
|
|
fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
|
|
dense_value_names_[dest_table],
|
|
&pull_dense_status);
|
|
for (auto& t : pull_dense_status) {
|
|
t.wait();
|
|
auto status = t.get();
|
|
if (status != 0) {
|
|
LOG(WARNING) << "pull dense after copy table failed,"
|
|
<< " table=" << dest_table;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DownpourWorker::CopyDenseVars() {
|
|
if (thread_id_ != 0) {
|
|
return;
|
|
}
|
|
for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
|
|
auto& src_var_name = copy_table_config_.src_var_list(i);
|
|
auto& dest_var_name = copy_table_config_.dest_var_list(i);
|
|
if (src_var_name == dest_var_name) {
|
|
continue;
|
|
}
|
|
VLOG(3) << "copy dense var from " << src_var_name << " to "
|
|
<< dest_var_name;
|
|
Variable* src_var = thread_scope_->FindVar(src_var_name);
|
|
CHECK(src_var != nullptr) << src_var_name << " not found"; // NOLINT
|
|
LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
|
|
CHECK(src_tensor != nullptr) << src_var_name
|
|
<< " tensor is null"; // NOLINT
|
|
float* src_data = src_tensor->data<float>();
|
|
|
|
Variable* dest_var = thread_scope_->FindVar(dest_var_name);
|
|
CHECK(dest_var != nullptr) << dest_var_name << " not found"; // NOLINT
|
|
LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
|
|
CHECK(dest_tensor != nullptr) << dest_var_name
|
|
<< " tensor is null"; // NOLINT
|
|
float* dest_data = dest_tensor->data<float>();
|
|
|
|
CHECK(src_tensor->numel() == dest_tensor->numel())
|
|
<< "tensor numel not equal," << src_tensor->numel() << " vs "
|
|
<< dest_tensor->numel();
|
|
for (int i = 0; i < src_tensor->numel(); i++) {
|
|
dest_data[i] = src_data[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
void DownpourWorker::TrainFilesWithProfiler() {
|
|
VLOG(3) << "Begin to train files with profiler";
|
|
platform::SetNumThreads(1);
|
|
device_reader_->Start();
|
|
std::vector<double> op_total_time;
|
|
std::vector<std::string> op_name;
|
|
for (auto& op : ops_) {
|
|
bool need_skip = false;
|
|
for (auto t = 0u; t < skip_ops_.size(); ++t) {
|
|
if (op->Type().find(skip_ops_[t]) != std::string::npos) {
|
|
need_skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!need_skip) {
|
|
op_name.push_back(op->Type());
|
|
}
|
|
}
|
|
|
|
VLOG(3) << "op name size: " << op_name.size();
|
|
op_total_time.resize(op_name.size());
|
|
for (size_t i = 0; i < op_total_time.size(); ++i) {
|
|
op_total_time[i] = 0.0;
|
|
}
|
|
platform::Timer timeline;
|
|
double total_time = 0.0;
|
|
double read_time = 0.0;
|
|
double pull_sparse_time = 0.0;
|
|
double adjust_ins_weight_time = 0.0;
|
|
double collect_label_time = 0.0;
|
|
double fill_sparse_time = 0.0;
|
|
double push_sparse_time = 0.0;
|
|
double push_dense_time = 0.0;
|
|
double copy_table_time = 0.0;
|
|
int cur_batch;
|
|
int batch_cnt = 0;
|
|
uint64_t total_inst = 0;
|
|
timeline.Start();
|
|
while ((cur_batch = device_reader_->Next()) > 0) {
|
|
timeline.Pause();
|
|
read_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
|
|
timeline.Start();
|
|
if (copy_table_config_.need_copy()) {
|
|
VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
|
|
if (batch_cnt % copy_table_config_.batch_num() == 0) {
|
|
CopySparseTable();
|
|
CopyDenseTable();
|
|
CopyDenseVars();
|
|
}
|
|
}
|
|
timeline.Pause();
|
|
copy_table_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
|
|
VLOG(3) << "program config size: " << param_.program_config_size();
|
|
for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).pull_sparse_table_id(i));
|
|
TableParameter table;
|
|
for (auto j : param_.sparse_table()) {
|
|
if (j.table_id() == tid) {
|
|
table = j;
|
|
break;
|
|
}
|
|
}
|
|
timeline.Start();
|
|
fleet_ptr_->PullSparseVarsSync(
|
|
*thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
|
|
&feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
|
|
timeline.Pause();
|
|
pull_sparse_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
timeline.Start();
|
|
CollectLabelInfo(i);
|
|
timeline.Pause();
|
|
collect_label_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
timeline.Start();
|
|
FillSparseValue(i);
|
|
timeline.Pause();
|
|
fill_sparse_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
timeline.Start();
|
|
auto nid_iter = std::find(sparse_value_names_[tid].begin(),
|
|
sparse_value_names_[tid].end(),
|
|
adjust_ins_weight_config_.nid_slot());
|
|
if (nid_iter != sparse_value_names_[tid].end()) {
|
|
AdjustInsWeight();
|
|
}
|
|
timeline.Pause();
|
|
adjust_ins_weight_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
}
|
|
VLOG(3) << "Fill sparse value for all sparse table done.";
|
|
|
|
int run_op_idx = 0;
|
|
for (auto& op : ops_) {
|
|
bool need_skip = false;
|
|
for (auto t = 0u; t < skip_ops_.size(); ++t) {
|
|
if (op->Type().find(skip_ops_[t]) != std::string::npos) {
|
|
need_skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!need_skip) {
|
|
timeline.Start();
|
|
VLOG(3) << "Going to run op " << op_name[run_op_idx];
|
|
op->Run(*thread_scope_, place_);
|
|
VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
|
|
timeline.Pause();
|
|
op_total_time[run_op_idx++] += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
}
|
|
}
|
|
|
|
// check inf and nan
|
|
for (std::string& var_name : check_nan_var_names_) {
|
|
Variable* var = thread_scope_->FindVar(var_name);
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
if (tensor == nullptr) {
|
|
continue;
|
|
}
|
|
PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
|
|
"Tensor %s contains Inf", var_name);
|
|
PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
|
|
"Tensor %s contains NAN", var_name);
|
|
}
|
|
|
|
if (need_to_push_sparse_) {
|
|
for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_sparse_table_id(i));
|
|
TableParameter table;
|
|
for (auto i : param_.sparse_table()) {
|
|
if (i.table_id() == tid) {
|
|
table = i;
|
|
break;
|
|
}
|
|
}
|
|
timeline.Start();
|
|
fleet_ptr_->PushSparseVarsWithLabelAsync(
|
|
*thread_scope_, tid, features_[tid], feature_labels_[tid],
|
|
sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
|
|
&feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
|
|
dump_slot_, &sparse_push_keys_[tid], no_cvm_);
|
|
timeline.Pause();
|
|
push_sparse_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
}
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
if (copy_table_config_.need_copy()) {
|
|
if (copy_table_config_.sparse_copy_by_feasign()) {
|
|
for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
|
|
uint64_t tid = copy_sparse_tables_[i].first;
|
|
feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
|
|
sparse_push_keys_[tid].end());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (need_to_push_dense_) {
|
|
timeline.Start();
|
|
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_dense_table_id(i));
|
|
fleet_ptr_->PushDenseVarsAsync(
|
|
*thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
|
|
scale_datanorm_, cur_batch);
|
|
}
|
|
timeline.Pause();
|
|
push_dense_time += timeline.ElapsedSec();
|
|
total_time += timeline.ElapsedSec();
|
|
VLOG(3) << "push sparse and dense gradient done.";
|
|
int32_t tmp_push_dense_wait_times = -1;
|
|
static uint32_t push_dense_wait_times =
|
|
static_cast<uint32_t>(tmp_push_dense_wait_times);
|
|
if (push_dense_status_.size() >= push_dense_wait_times) {
|
|
for (auto& t : push_dense_status_) {
|
|
t.wait();
|
|
}
|
|
push_dense_status_.resize(0);
|
|
}
|
|
|
|
if (tmp_push_dense_wait_times == -1) {
|
|
push_dense_status_.resize(0);
|
|
}
|
|
}
|
|
|
|
if (need_to_push_sparse_) {
|
|
int32_t tmp_push_sparse_wait_times = -1;
|
|
static uint32_t push_sparse_wait_times =
|
|
static_cast<uint32_t>(tmp_push_sparse_wait_times);
|
|
if (push_sparse_status_.size() >= push_sparse_wait_times) {
|
|
for (auto& t : push_sparse_status_) {
|
|
t.wait();
|
|
}
|
|
push_sparse_status_.resize(0);
|
|
}
|
|
|
|
if (tmp_push_sparse_wait_times == -1) {
|
|
push_sparse_status_.resize(0);
|
|
}
|
|
|
|
VLOG(3) << "going to increase thread version";
|
|
VLOG(3) << "push dense table id size: "
|
|
<< param_.program_config(0).push_dense_table_id_size();
|
|
}
|
|
|
|
if (need_to_push_dense_) {
|
|
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_dense_table_id(i));
|
|
pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
|
|
}
|
|
}
|
|
|
|
PrintFetchVars();
|
|
thread_scope_->DropKids();
|
|
total_inst += cur_batch;
|
|
++batch_cnt;
|
|
|
|
if (thread_id_ == 0) {
|
|
// should be configured here
|
|
if (batch_cnt > 0 && batch_cnt % 100 == 0) {
|
|
double op_sum_time = 0;
|
|
std::unordered_map<std::string, double> op_to_time;
|
|
for (size_t i = 0; i < op_total_time.size(); ++i) {
|
|
fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
|
|
op_name[i].c_str(), op_total_time[i] / batch_cnt);
|
|
if (op_to_time.find(op_name[i]) == op_to_time.end()) {
|
|
op_to_time[op_name[i]] = 0.0;
|
|
}
|
|
op_to_time[op_name[i]] += op_total_time[i];
|
|
op_sum_time += op_total_time[i];
|
|
}
|
|
for (auto& i : op_to_time) {
|
|
fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
|
|
i.second / batch_cnt);
|
|
}
|
|
fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
|
|
fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
|
|
fprintf(stderr, "pull sparse time: %fs\n",
|
|
pull_sparse_time / batch_cnt);
|
|
fprintf(stderr, "fill sparse time: %fs\n",
|
|
fill_sparse_time / batch_cnt);
|
|
fprintf(stderr, "push sparse time: %fs\n",
|
|
push_sparse_time / batch_cnt);
|
|
fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
|
|
fprintf(stderr, "collect label time: %fs\n",
|
|
collect_label_time / batch_cnt);
|
|
fprintf(stderr, "adjust ins weight time: %fs\n",
|
|
adjust_ins_weight_time / batch_cnt);
|
|
fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
|
|
fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
|
|
fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
|
|
fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
|
|
fprintf(stderr, "pull sparse time percent: %f\n",
|
|
pull_sparse_time / total_time * 100);
|
|
fprintf(stderr, "adjust ins weight time percent: %f\n",
|
|
adjust_ins_weight_time / total_time * 100);
|
|
fprintf(stderr, "copy table time percent: %f\n",
|
|
copy_table_time / total_time * 100);
|
|
fprintf(stderr, "collect label time percent: %f\n",
|
|
collect_label_time / total_time * 100);
|
|
fprintf(stderr, "fill sparse time percent: %f\n",
|
|
fill_sparse_time / total_time * 100);
|
|
fprintf(stderr, "push sparse time percent: %f\n",
|
|
push_sparse_time / total_time * 100);
|
|
fprintf(stderr, "push dense time percent: %f\n",
|
|
push_dense_time / total_time * 100);
|
|
fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
|
|
}
|
|
}
|
|
timeline.Start();
|
|
}
|
|
if (copy_table_config_.need_copy()) {
|
|
CopySparseTable();
|
|
CopyDenseTable();
|
|
CopyDenseVars();
|
|
}
|
|
}
|
|
|
|
void DownpourWorker::TrainFiles() {
|
|
VLOG(3) << "Begin to train files";
|
|
platform::SetNumThreads(1);
|
|
device_reader_->Start();
|
|
int batch_cnt = 0;
|
|
int cur_batch;
|
|
while ((cur_batch = device_reader_->Next()) > 0) {
|
|
if (copy_table_config_.need_copy()) {
|
|
if (batch_cnt % copy_table_config_.batch_num() == 0) {
|
|
CopySparseTable();
|
|
CopyDenseTable();
|
|
CopyDenseVars();
|
|
}
|
|
}
|
|
// pull sparse here
|
|
for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).pull_sparse_table_id(i));
|
|
TableParameter table;
|
|
for (auto j : param_.sparse_table()) {
|
|
if (j.table_id() == tid) {
|
|
table = j;
|
|
break;
|
|
}
|
|
}
|
|
fleet_ptr_->PullSparseVarsSync(
|
|
*thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
|
|
&feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
|
|
CollectLabelInfo(i);
|
|
FillSparseValue(i);
|
|
auto nid_iter = std::find(sparse_value_names_[tid].begin(),
|
|
sparse_value_names_[tid].end(),
|
|
adjust_ins_weight_config_.nid_slot());
|
|
if (nid_iter != sparse_value_names_[tid].end()) {
|
|
AdjustInsWeight();
|
|
}
|
|
}
|
|
VLOG(3) << "fill sparse value for all sparse table done.";
|
|
|
|
// do computation here
|
|
for (auto& op : ops_) {
|
|
bool need_skip = false;
|
|
for (auto t = 0u; t < skip_ops_.size(); ++t) {
|
|
if (op->Type().find(skip_ops_[t]) != std::string::npos) {
|
|
need_skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!need_skip) {
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
try {
|
|
op->Run(*thread_scope_, place_);
|
|
} catch (std::exception& e) {
|
|
fprintf(stderr, "error message: %s\n", e.what());
|
|
auto& ins_id_vec = device_reader_->GetInsIdVec();
|
|
size_t batch_size = device_reader_->GetCurBatchSize();
|
|
std::string s = "";
|
|
for (auto& ins_id : ins_id_vec) {
|
|
if (s != "") s += ",";
|
|
s += ins_id;
|
|
}
|
|
fprintf(stderr, "batch_size: %zu, ins_ids_vec: %s\n", batch_size,
|
|
s.c_str());
|
|
s = "";
|
|
for (auto& param : all_param_) {
|
|
Variable* var = thread_scope_->FindVar(param);
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
Tensor* tensor = nullptr;
|
|
int64_t len = 0;
|
|
if (var->IsType<framework::LoDTensor>()) {
|
|
tensor = var->GetMutable<LoDTensor>();
|
|
len = tensor->numel();
|
|
} else if (var->IsType<SelectedRows>()) {
|
|
auto selected_rows = var->GetMutable<SelectedRows>();
|
|
tensor = selected_rows->mutable_value();
|
|
len = tensor->numel();
|
|
}
|
|
if (!tensor->IsInitialized()) {
|
|
continue;
|
|
}
|
|
s += param + ":" + std::to_string(len) + ":";
|
|
s += PrintLodTensor(tensor, 0, len);
|
|
fprintf(stderr, "%s\n", s.c_str());
|
|
fflush(stderr);
|
|
s = "";
|
|
}
|
|
throw e;
|
|
}
|
|
#else
|
|
op->Run(*thread_scope_, place_);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// check inf and nan
|
|
for (std::string& var_name : check_nan_var_names_) {
|
|
Variable* var = thread_scope_->FindVar(var_name);
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
if (tensor == nullptr) {
|
|
continue;
|
|
}
|
|
PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
|
|
"Tensor %s contains Inf", var_name);
|
|
PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
|
|
"Tensor %s contains NAN", var_name);
|
|
}
|
|
|
|
if (need_to_push_sparse_) {
|
|
// push gradients here
|
|
for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_sparse_table_id(i));
|
|
TableParameter table;
|
|
for (auto i : param_.sparse_table()) {
|
|
if (i.table_id() == tid) {
|
|
table = i;
|
|
break;
|
|
}
|
|
}
|
|
fleet_ptr_->PushSparseVarsWithLabelAsync(
|
|
*thread_scope_, tid, features_[tid], feature_labels_[tid],
|
|
sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
|
|
&feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
|
|
dump_slot_, &sparse_push_keys_[tid], no_cvm_);
|
|
}
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_PSLIB
|
|
if (copy_table_config_.need_copy()) {
|
|
if (copy_table_config_.sparse_copy_by_feasign()) {
|
|
for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
|
|
uint64_t tid = copy_sparse_tables_[i].first;
|
|
feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
|
|
sparse_push_keys_[tid].end());
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (need_to_push_dense_) {
|
|
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_dense_table_id(i));
|
|
fleet_ptr_->PushDenseVarsAsync(
|
|
*thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
|
|
scale_datanorm_, cur_batch);
|
|
}
|
|
VLOG(3) << "push dense gradient done.";
|
|
|
|
// the following code should be more precise and clean
|
|
// TODO(guru4elephant)
|
|
int32_t tmp_push_dense_wait_times = -1;
|
|
static uint32_t push_dense_wait_times =
|
|
static_cast<uint32_t>(tmp_push_dense_wait_times);
|
|
|
|
if (push_dense_status_.size() >= push_dense_wait_times) {
|
|
for (auto& t : push_dense_status_) {
|
|
t.wait();
|
|
}
|
|
push_dense_status_.resize(0);
|
|
}
|
|
|
|
if (tmp_push_dense_wait_times == -1) {
|
|
push_dense_status_.resize(0);
|
|
}
|
|
}
|
|
|
|
if (need_to_push_sparse_) {
|
|
VLOG(3) << "push sparse gradient done.";
|
|
int32_t tmp_push_sparse_wait_times = -1;
|
|
static uint32_t push_sparse_wait_times =
|
|
static_cast<uint32_t>(tmp_push_sparse_wait_times);
|
|
if (push_sparse_status_.size() >= push_sparse_wait_times) {
|
|
for (auto& t : push_sparse_status_) {
|
|
t.wait();
|
|
}
|
|
push_sparse_status_.resize(0);
|
|
}
|
|
|
|
if (tmp_push_sparse_wait_times == -1) {
|
|
push_sparse_status_.resize(0);
|
|
}
|
|
}
|
|
|
|
if (need_to_push_dense_) {
|
|
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
|
|
++i) {
|
|
uint64_t tid = static_cast<uint64_t>(
|
|
param_.program_config(0).push_dense_table_id(i));
|
|
pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
|
|
}
|
|
}
|
|
if (need_dump_field_) {
|
|
DumpField(*thread_scope_, dump_mode_, dump_interval_);
|
|
}
|
|
if (need_dump_param_ && thread_id_ == 0) {
|
|
DumpParam(*thread_scope_, batch_cnt);
|
|
}
|
|
|
|
PrintFetchVars();
|
|
thread_scope_->DropKids();
|
|
++batch_cnt;
|
|
}
|
|
if (need_dump_field_ || need_dump_param_) {
|
|
writer_.Flush();
|
|
}
|
|
if (copy_table_config_.need_copy()) {
|
|
CopySparseTable();
|
|
CopyDenseTable();
|
|
CopyDenseVars();
|
|
}
|
|
}
|
|
|
|
} // end namespace framework
|
|
} // end namespace paddle
|