You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.6 KiB
160 lines
5.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/assign_op.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class AssignOp : public framework::OperatorWithKernel {
|
|
public:
|
|
AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
if (ctx->HasInput("X")) {
|
|
auto type = ctx->GetInputsVarType("X")[0];
|
|
if (type == framework::proto::VarType::SELECTED_ROWS ||
|
|
type == framework::proto::VarType::LOD_TENSOR) {
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
if (type == framework::proto::VarType::LOD_TENSOR) {
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
} else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
|
|
if (ctx->IsRuntime()) {
|
|
// The runtime output shape is determined in kernel.
|
|
return;
|
|
} else {
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const framework::Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
expected_kernel_type.place_,
|
|
tensor.layout());
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
const framework::Variable *var = ctx.InputVar("X");
|
|
if (var->IsType<framework::LoDTensorArray>()) {
|
|
auto t_arr = var->Get<framework::LoDTensorArray>();
|
|
// NOTE(liym27): Support an empty tensor array as Input.
|
|
// And set the kernel type is float.
|
|
if (t_arr.size() == 0) {
|
|
return framework::OpKernelType(framework::proto::VarType::FP32,
|
|
ctx.device_context());
|
|
}
|
|
}
|
|
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class AssignInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext *ctx) const override {
|
|
ctx->SyncTypeAndDataType("X", "Out");
|
|
}
|
|
};
|
|
|
|
class AssignKernel {
|
|
public:
|
|
void operator()(const framework::ExecutionContext &ctx) const {
|
|
auto *x = ctx.InputVar("X");
|
|
if (x == nullptr) {
|
|
return;
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx.HasOutput("Out"), true,
|
|
platform::errors::NotFound("Output(Out) of assign_op is not found."));
|
|
auto *out = ctx.OutputVar("Out");
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
auto &dev_ctx = *pool.Get(ctx.GetPlace());
|
|
|
|
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
|
|
}
|
|
};
|
|
|
|
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
|
|
"could be LoDTensor, SelectedRows or LoDTensorArray.")
|
|
.AsDispensable();
|
|
AddOutput("Out",
|
|
"(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
|
|
"is the same as input X.");
|
|
AddComment(R"DOC(Assign Operator
|
|
|
|
Out = X, when type in [LoDTensor/SelectedRows/LoDTensorArray]
|
|
raise error if the type is not listed above.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("assign");
|
|
op->SetInput("X", this->OutputGrad("Out"));
|
|
op->SetOutput("Out", this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
namespace plat = paddle::platform;
|
|
REGISTER_OPERATOR(assign, ops::AssignOp,
|
|
ops::AssignGradMaker<paddle::framework::OpDesc>,
|
|
ops::AssignGradMaker<paddle::imperative::OpBase>,
|
|
ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
|
|
ops::AssignInferVarType);
|
|
|
|
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
|
|
ops::AssignKernel, int, ops::AssignKernel,
|
|
int64_t, ops::AssignKernel, bool,
|
|
ops::AssignKernel, plat::float16,
|
|
ops::AssignKernel);
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
|
|
ops::AssignKernel, int, ops::AssignKernel,
|
|
int64_t, ops::AssignKernel, bool,
|
|
ops::AssignKernel, plat::float16,
|
|
ops::AssignKernel);
|
|
#endif
|