You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
7.5 KiB
192 lines
7.5 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <gflags/gflags.h>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DDim = framework::DDim;
|
|
|
|
template <typename T, typename IndexT = int>
|
|
void IndexSampleInner(const framework::ExecutionContext &context,
|
|
const LoDTensor &input, const LoDTensor &index,
|
|
LoDTensor *output) {
|
|
auto input_dims = input.dims();
|
|
auto index_dims = index.dims();
|
|
|
|
int batch_size = input_dims[0];
|
|
auto value_length = input_dims[1];
|
|
auto index_length = index_dims[1];
|
|
int index_ids_num = index.numel();
|
|
|
|
std::vector<T> input_vec;
|
|
std::vector<IndexT> index_vec;
|
|
TensorToVector(input, context.device_context(), &input_vec);
|
|
TensorToVector(index, context.device_context(), &index_vec);
|
|
|
|
std::vector<T> res(index_ids_num);
|
|
for (int i = 0; i < index_ids_num; i++) {
|
|
int b = floor(i / index_length);
|
|
PADDLE_ENFORCE_GE(
|
|
index_vec[i], 0,
|
|
platform::errors::InvalidArgument(
|
|
"Variable value (index) of OP(index_sample) "
|
|
"expected >= 0 and < %ld, but got %ld. Please check input "
|
|
"value.",
|
|
value_length, index_vec[i]));
|
|
PADDLE_ENFORCE_LT(
|
|
index_vec[i], value_length,
|
|
platform::errors::InvalidArgument(
|
|
"Variable value (index) of OP(index_sample) "
|
|
"expected >= 0 and < %ld, but got %ld. Please check input "
|
|
"value.",
|
|
value_length, index_vec[i]));
|
|
|
|
int v_i = b * value_length + static_cast<int>(index_vec[i]);
|
|
T v = input_vec[v_i];
|
|
VLOG(4) << "Index Sample: batch = " << b << " index = " << v_i
|
|
<< " value = " << v;
|
|
res[i] = v;
|
|
}
|
|
|
|
auto ddim = framework::make_ddim({batch_size, index_length});
|
|
output->mutable_data<T>(context.GetPlace());
|
|
framework::TensorFromVector(res, context.device_context(), output);
|
|
output->Resize(ddim);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class IndexSampleKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *input_var = ctx.InputVar("X");
|
|
auto *index_var = ctx.InputVar("Index");
|
|
|
|
auto &input_tensor = input_var->Get<LoDTensor>();
|
|
auto &index_tensor = index_var->Get<LoDTensor>();
|
|
|
|
auto *out_var = ctx.OutputVar("Out");
|
|
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
|
|
|
|
const auto &index_type = index_tensor.type();
|
|
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
|
|
index_type == framework::proto::VarType::INT64;
|
|
PADDLE_ENFORCE_EQ(index_type_match, true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Index) holds the wrong type, it holds %s, but "
|
|
"desires to be %s or %s",
|
|
paddle::framework::DataTypeToString(index_type),
|
|
paddle::framework::DataTypeToString(
|
|
framework::proto::VarType::INT32),
|
|
paddle::framework::DataTypeToString(
|
|
framework::proto::VarType::INT64)));
|
|
if (index_type == framework::proto::VarType::INT32) {
|
|
IndexSampleInner<T, int>(ctx, input_tensor, index_tensor, out_tensor);
|
|
} else if (index_type == framework::proto::VarType::INT64) {
|
|
IndexSampleInner<T, int64_t>(ctx, input_tensor, index_tensor, out_tensor);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T, typename IndexT = int>
|
|
void IndexSampleGradInner(const framework::ExecutionContext &context,
|
|
const LoDTensor &out_grad, const LoDTensor &index,
|
|
LoDTensor *x_grad) {
|
|
std::vector<T> out_grad_vec;
|
|
std::vector<IndexT> index_vec;
|
|
TensorToVector(out_grad, context.device_context(), &out_grad_vec);
|
|
TensorToVector(index, context.device_context(), &index_vec);
|
|
|
|
auto index_dims = index.dims();
|
|
auto x_grad_dims = x_grad->dims();
|
|
|
|
auto value_length = x_grad_dims[1];
|
|
auto index_length = index_dims[1];
|
|
int index_ids_num = index.numel();
|
|
|
|
std::vector<T> x_grad_vec(x_grad->numel(), 0);
|
|
|
|
for (int i = 0; i < index_ids_num; i++) {
|
|
int b = floor(i / index_length);
|
|
PADDLE_ENFORCE_GE(
|
|
index_vec[i], 0,
|
|
platform::errors::InvalidArgument(
|
|
"Variable value (index) of OP(index_sample_grad) "
|
|
"expected >= 0 and < %ld, but got %ld. Please check input "
|
|
"value.",
|
|
value_length, index_vec[i]));
|
|
PADDLE_ENFORCE_LT(
|
|
index_vec[i], value_length,
|
|
platform::errors::InvalidArgument(
|
|
"Variable value (index) of OP(index_sample_grad) "
|
|
"expected >= 0 and < %ld, but got %ld. Please check input "
|
|
"value.",
|
|
value_length, index_vec[i]));
|
|
int v_i = b * value_length + static_cast<int>(index_vec[i]);
|
|
x_grad_vec[v_i] += out_grad_vec[i];
|
|
}
|
|
x_grad->mutable_data<T>(context.GetPlace());
|
|
framework::TensorFromVector(x_grad_vec, context.device_context(), x_grad);
|
|
x_grad->Resize(x_grad_dims);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class IndexSampleGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto *index_var = context.InputVar("Index");
|
|
auto *x_grad_var = context.OutputVar(framework::GradVarName("X"));
|
|
auto *out_grad_var = context.InputVar(framework::GradVarName("Out"));
|
|
|
|
auto &index_tensor = index_var->Get<LoDTensor>();
|
|
auto &out_grad_tensor = out_grad_var->Get<LoDTensor>();
|
|
auto *x_grad_tensor = x_grad_var->GetMutable<framework::LoDTensor>();
|
|
|
|
const auto &index_type = index_tensor.type();
|
|
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
|
|
index_type == framework::proto::VarType::INT64;
|
|
PADDLE_ENFORCE_EQ(index_type_match, true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(Index) holds the wrong type, it holds %s, but "
|
|
"desires to be %s or %s",
|
|
paddle::framework::DataTypeToString(index_type),
|
|
paddle::framework::DataTypeToString(
|
|
framework::proto::VarType::INT32),
|
|
paddle::framework::DataTypeToString(
|
|
framework::proto::VarType::INT64)));
|
|
if (index_type == framework::proto::VarType::INT32) {
|
|
IndexSampleGradInner<T, int>(context, out_grad_tensor, index_tensor,
|
|
x_grad_tensor);
|
|
} else if (index_type == framework::proto::VarType::INT64) {
|
|
IndexSampleGradInner<T, int64_t>(context, out_grad_tensor, index_tensor,
|
|
x_grad_tensor);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|