You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.9 KiB
172 lines
6.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/margin_rank_loss_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class MarginRankLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// input check
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
|
|
"margin_rank_loss");
|
|
OP_INOUT_CHECK(ctx->HasInput("X1"), "Input", "X1", "margin_rank_loss");
|
|
OP_INOUT_CHECK(ctx->HasInput("X2"), "Input", "X2", "margin_rank_loss");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "margin_rank_loss");
|
|
|
|
auto label_dims = ctx->GetInputDim("Label");
|
|
auto x1_dims = ctx->GetInputDim("X1");
|
|
auto x2_dims = ctx->GetInputDim("X2");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims, x1_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The shape of Input(Label) shape should equals the shape of "
|
|
"Input(X1). Received: Input(Label)'s shape: [%s], Input(X1)'s "
|
|
"shape: [%s].",
|
|
label_dims, x1_dims));
|
|
PADDLE_ENFORCE_EQ(
|
|
x1_dims, x2_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The shape of Input(X1) shape should equals the shape of "
|
|
"Input(X2). Received: Input(X1)'s shape: [%s], Input(X2)'s shape: "
|
|
"[%s].",
|
|
x1_dims, x2_dims));
|
|
PADDLE_ENFORCE_EQ(
|
|
label_dims.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"The dimensions of Input(Label) should be 2. Received: "
|
|
"the shape of Input(Label): [%s], the dimensions of Input(Label): "
|
|
"%d.",
|
|
label_dims, label_dims.size()));
|
|
PADDLE_ENFORCE_EQ(label_dims[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"The second dimension of Input(Lable) should be 1"
|
|
"Received: the shape of Input(Label): [%s].",
|
|
label_dims));
|
|
ctx->SetOutputDim("Activated", label_dims);
|
|
ctx->SetOutputDim("Out", label_dims);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X1",
|
|
"(2-D tensor with shape [batch_size x 1]) The score for "
|
|
"one item X1 to be ranked, from pairwise ranking model.");
|
|
AddInput("X2",
|
|
"(2-D tensor with shape [batch_size x 1]) The score for "
|
|
"another item X2 to be ranked, from pairwise ranking model.");
|
|
AddInput("Label",
|
|
"(2-D tensor with shape [batch_size x 1]) "
|
|
"The label indicating X1 ranked higher than X2 or not, "
|
|
"can only be +1 or -1.");
|
|
AddOutput("Activated",
|
|
"(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
|
|
"to indicate whether each element of Output(Out) is activated.")
|
|
.AsIntermediate();
|
|
AddOutput("Out",
|
|
"(2-D tensor with shape [batch_size x 1]) "
|
|
"The output loss of MarginRankLoss operator.");
|
|
AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
|
|
.SetDefault(static_cast<T>(0));
|
|
AddComment(R"DOC(
|
|
MarginRankLoss Operator.
|
|
|
|
This operator measures the loss given a pair of training sample
|
|
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1`
|
|
indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss
|
|
is calculated as:
|
|
|
|
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
|
|
|
|
The attribute `margin` here helps make the predictions more robust.
|
|
Denote the item ranked higher as the positive sample, otherwise the negative
|
|
sample. If the score of the two samples satisfies
|
|
|
|
$positive sample - negative sample < margin$
|
|
|
|
the pair of samples will contribute to the final loss, which will backpropagate
|
|
and train the ranking model to enlarge the difference between the two scores.
|
|
|
|
For batch input with size `batch_size`, `X1`, `X2` and `Label`
|
|
all have the same shape [batch_size x 1].
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MarginRankLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
|
|
"margin_rank_loss_grad");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "margin_rank_loss_grad");
|
|
OP_INOUT_CHECK(ctx->HasInput("Activated"), "Input", "Activated",
|
|
"margin_rank_loss_grad");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X1")), "Output",
|
|
framework::GradVarName("X1"), "margin_rank_loss_grad");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X2")), "Output",
|
|
framework::GradVarName("X2"), "margin_rank_loss_grad");
|
|
|
|
auto dims = ctx->GetInputDim("Label");
|
|
ctx->SetOutputDim(framework::GradVarName("X1"), dims);
|
|
ctx->SetOutputDim(framework::GradVarName("X2"), dims);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MarginRankLossGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("margin_rank_loss_grad");
|
|
op->SetInput("Activated", this->Output("Activated"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetInput("Label", this->Input("Label"));
|
|
op->SetOutput(framework::GradVarName("X1"), this->InputGrad("X1"));
|
|
op->SetOutput(framework::GradVarName("X2"), this->InputGrad("X2"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
|
|
ops::MarginRankLossOpMaker<float>,
|
|
ops::MarginRankLossGradMaker<paddle::framework::OpDesc>,
|
|
ops::MarginRankLossGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
margin_rank_loss,
|
|
ops::MarginRankLossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
margin_rank_loss_grad,
|
|
ops::MarginRankLossGradKernel<paddle::platform::CPUDeviceContext, float>);
|