You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
206 lines
8.2 KiB
206 lines
8.2 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <cublas.h>
|
|
#include <algorithm>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/rank_attention.cu.h"
|
|
#include "paddle/fluid/operators/rank_attention_op.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class RankAttentionCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *X = ctx.Input<Tensor>("X");
|
|
auto *rank_offset = ctx.Input<Tensor>("RankOffset");
|
|
auto *param = ctx.Input<Tensor>("RankParam");
|
|
auto *input_help = ctx.Output<Tensor>("InputHelp");
|
|
auto *ins_rank = ctx.Output<Tensor>("InsRank");
|
|
int max_rank = ctx.Attr<int>("MaxRank");
|
|
int64_t max_size = ctx.Attr<int>("MaxSize");
|
|
auto *Out = ctx.Output<Tensor>("Out");
|
|
|
|
// check dims
|
|
auto x_dims = X->dims();
|
|
auto ins_num = x_dims[0];
|
|
auto x_fea_dim = x_dims[1];
|
|
auto para_dims = param->dims();
|
|
auto para_row = para_dims[0];
|
|
auto para_col = para_dims[1];
|
|
auto rank_offset_dims = rank_offset->dims();
|
|
PADDLE_ENFORCE_EQ(
|
|
rank_offset_dims[0], ins_num,
|
|
platform::errors::InvalidArgument("Input(RankOffset) has wrong rows."));
|
|
PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankOffset) has wrong columns."));
|
|
PADDLE_ENFORCE_EQ(
|
|
max_rank * max_rank * x_fea_dim, para_row,
|
|
platform::errors::InvalidArgument("Input(RankParam) has wrong rows."));
|
|
|
|
int block_matrix_row = max_rank * x_fea_dim;
|
|
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
|
|
int max_ins = std::max(ins_num, max_size);
|
|
|
|
Tensor param_help;
|
|
param_help = ctx.AllocateTmpTensor<T, DeviceContext>(
|
|
{max_ins * block_matrix_row, para_col}, dev_ctx);
|
|
param_help.mutable_data<T>(ctx.GetPlace());
|
|
|
|
input_help->Resize({max_ins, block_matrix_row});
|
|
ins_rank->Resize({max_ins, 1});
|
|
input_help->mutable_data<T>(ctx.GetPlace());
|
|
ins_rank->mutable_data<T>(ctx.GetPlace());
|
|
Out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
// initialize
|
|
auto param_help_eigen = framework::EigenVector<T>::Flatten(param_help);
|
|
auto input_help_eigen = framework::EigenVector<T>::Flatten(*input_help);
|
|
auto ins_rank_eigen = framework::EigenVector<T>::Flatten(*ins_rank);
|
|
auto out_eigen = framework::EigenVector<T>::Flatten(*Out);
|
|
|
|
auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
|
|
.eigen_device();
|
|
|
|
param_help_eigen.device(place) =
|
|
param_help_eigen.constant(static_cast<T>(0));
|
|
input_help_eigen.device(place) =
|
|
input_help_eigen.constant(static_cast<T>(0));
|
|
ins_rank_eigen.device(place) = ins_rank_eigen.constant(static_cast<T>(-1));
|
|
out_eigen.device(place) = out_eigen.constant(static_cast<T>(0));
|
|
|
|
// get data ptr
|
|
T *input_help_data = input_help->data<T>();
|
|
T *param_help_data = param_help.data<T>();
|
|
T *ins_rank_data = ins_rank->data<T>();
|
|
T *out_data = Out->data<T>();
|
|
|
|
expand_rank_attention_input(
|
|
ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim,
|
|
input_help_data, ins_num, block_matrix_row, rank_offset->data<int>(),
|
|
rank_offset_dims[0], rank_offset_dims[1], ins_rank_data, max_rank);
|
|
|
|
expand_rank_attention_param(
|
|
ctx.cuda_device_context().stream(), X->data<T>(), ins_num, x_fea_dim,
|
|
rank_offset->data<int>(), rank_offset_dims[0], rank_offset_dims[1],
|
|
param->data<T>(), para_row, para_col, param_help_data,
|
|
ins_num * block_matrix_row, para_col, max_rank);
|
|
|
|
CBLAS_TRANSPOSE transA = CblasNoTrans;
|
|
CBLAS_TRANSPOSE transB = CblasNoTrans;
|
|
|
|
T alpha = 1;
|
|
T beta = 0;
|
|
int64_t strideA = block_matrix_row;
|
|
int64_t strideB = block_matrix_row * para_col;
|
|
|
|
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
|
|
blas.BatchedGEMM(transA, transB, 1, para_col, block_matrix_row, alpha,
|
|
input_help_data, param_help_data, beta, out_data, ins_num,
|
|
strideA, strideB);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class RankAttentionGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *X = ctx.Input<Tensor>("X"); // not use data
|
|
auto *rank_offset = ctx.Input<Tensor>("RankOffset"); // not use data
|
|
auto *param = ctx.Input<Tensor>("RankParam"); // not use data
|
|
auto *input_help = ctx.Input<Tensor>("InputHelp");
|
|
auto *ins_rank = ctx.Input<Tensor>("InsRank");
|
|
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
int64_t max_size = ctx.Attr<int>("MaxSize");
|
|
|
|
auto *drank_para = ctx.Output<Tensor>(framework::GradVarName("RankParam"));
|
|
|
|
// get dim
|
|
auto x_dims = X->dims();
|
|
auto ins_num = x_dims[0];
|
|
auto x_fea_dim = x_dims[1];
|
|
auto para_dims = param->dims();
|
|
auto para_row = para_dims[0];
|
|
auto para_col = para_dims[1];
|
|
auto rank_offset_dims = rank_offset->dims();
|
|
auto max_rank = (rank_offset_dims[1] - 1) / 2;
|
|
int block_matrix_row = max_rank * x_fea_dim;
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
|
|
.eigen_device();
|
|
|
|
int max_ins = std::max(ins_num, max_size);
|
|
// initialize out grad
|
|
drank_para->mutable_data<T>(ctx.GetPlace());
|
|
auto drank_para_eigen = framework::EigenVector<T>::Flatten(*drank_para);
|
|
drank_para_eigen.device(place) =
|
|
drank_para_eigen.constant(static_cast<T>(0));
|
|
|
|
// copy data
|
|
Tensor param_grad;
|
|
param_grad = ctx.AllocateTmpTensor<T, DeviceContext>(
|
|
{max_ins * block_matrix_row, para_col}, dev_ctx);
|
|
param_grad.mutable_data<T>(ctx.GetPlace());
|
|
// initialize
|
|
auto param_grad_eigen = framework::EigenVector<T>::Flatten(param_grad);
|
|
param_grad_eigen.device(place) =
|
|
param_grad_eigen.constant(static_cast<T>(0));
|
|
// get data ptr
|
|
const T *input_help_data = input_help->data<T>();
|
|
const T *ins_rank_data = ins_rank->data<T>();
|
|
T *param_grad_data = param_grad.data<T>();
|
|
|
|
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
|
|
T alpha = 1;
|
|
T beta = 0;
|
|
|
|
// get param_grad
|
|
CBLAS_TRANSPOSE transA = CblasTrans;
|
|
CBLAS_TRANSPOSE transB = CblasNoTrans;
|
|
int64_t strideA = block_matrix_row;
|
|
int64_t strideB = para_col;
|
|
blas.BatchedGEMM(transA, transB, block_matrix_row, para_col, 1, alpha,
|
|
input_help_data, dout->data<T>(), beta, param_grad_data,
|
|
ins_num, strideA, strideB);
|
|
// merge param_grad to get drank_para
|
|
merge_rank_attention_param_grad(
|
|
ctx.cuda_device_context().stream(), param_grad_data,
|
|
ins_num * block_matrix_row, para_col, drank_para->data<T>(), para_row,
|
|
para_col, ins_rank_data, ins_num, max_rank, x_fea_dim);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using GPUCtx = paddle::platform::CUDADeviceContext;
|
|
REGISTER_OP_CUDA_KERNEL(rank_attention,
|
|
ops::RankAttentionCUDAKernel<GPUCtx, float>,
|
|
ops::RankAttentionCUDAKernel<GPUCtx, double>);
|
|
|
|
REGISTER_OP_CUDA_KERNEL(rank_attention_grad,
|
|
ops::RankAttentionGradOpCUDAKernel<GPUCtx, float>,
|
|
ops::RankAttentionGradOpCUDAKernel<GPUCtx, double>);
|