You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
157 lines
6.3 KiB
157 lines
6.3 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/unstack_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class UnStackOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "UnStack");
|
|
int axis = ctx->Attrs().Get<int>("axis");
|
|
int num = ctx->Attrs().Get<int>("num");
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
int rank = x_dim.size();
|
|
PADDLE_ENFORCE_GE(axis, -rank,
|
|
platform::errors::InvalidArgument(
|
|
"The attribute axis is out of range, it must be "
|
|
"inside [-rank, rank), where rank = %d",
|
|
rank));
|
|
PADDLE_ENFORCE_LT(axis, rank,
|
|
platform::errors::InvalidArgument(
|
|
"The attribute axis is out of range, it must be "
|
|
"inside [-rank, rank), where rank = %d",
|
|
rank));
|
|
if (axis < 0) axis += rank;
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->Outputs("Y").size(), static_cast<size_t>(num),
|
|
platform::errors::InvalidArgument(
|
|
"Number of Outputs(Y) is wrong. Got %d , but it must "
|
|
"equal to attribute num which is %d.",
|
|
ctx->Outputs("Y").size(), static_cast<size_t>(num)));
|
|
if (x_dim[axis] > 0) {
|
|
PADDLE_ENFORCE_EQ(
|
|
num, x_dim[axis],
|
|
platform::errors::InvalidArgument(
|
|
"The number of attribute num is not equal to the length of the "
|
|
"%d axis of Input(X). Expect %d but got %d.",
|
|
axis, x_dim[axis], num));
|
|
}
|
|
auto vec = framework::vectorize<int>(x_dim);
|
|
vec.erase(vec.begin() + axis);
|
|
ctx->SetOutputsDim("Y", std::vector<framework::DDim>( // NOLINT
|
|
x_dim[axis], framework::make_ddim(vec)));
|
|
}
|
|
};
|
|
|
|
class UnStackOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "The input of unstack op.");
|
|
AddOutput("Y", "The output of unstack op.").AsDuplicable();
|
|
AddAttr<int>("axis", "The axis along which Input(X) should be unstacked.")
|
|
.SetDefault(0);
|
|
AddAttr<int>("num", "The number of outputs(Y).").GreaterThan(0);
|
|
AddComment(R"DOC(
|
|
UnStack Operator.
|
|
|
|
UnStack Input(X) into several tensors along Attr(axis).
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class UnStackGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("unstack_grad");
|
|
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
class UnStackGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Y")).size(), 0,
|
|
platform::errors::InvalidArgument(
|
|
"Number of Inputs(Y@Grad) must be larger than 0"));
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "X",
|
|
"UnStackGrad");
|
|
auto input_dims = ctx->GetInputsDim(framework::GradVarName("Y"));
|
|
for (size_t i = 1; i < input_dims.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
|
|
platform::errors::InvalidArgument(
|
|
"Dims of all Inputs(Y@Grad) must be the same"));
|
|
}
|
|
|
|
int axis = ctx->Attrs().Get<int>("axis");
|
|
int rank = input_dims[0].size();
|
|
PADDLE_ENFORCE_GE(axis, -(rank + 1),
|
|
platform::errors::InvalidArgument(
|
|
"The attribute axis is out of range, it must be "
|
|
"inside [-(rank+1), rank+1), where rank = %d",
|
|
rank));
|
|
PADDLE_ENFORCE_LT(axis, rank + 1,
|
|
platform::errors::InvalidArgument(
|
|
"The attribute axis is out of range, it must be "
|
|
"inside [-(rank+1), rank+1), where rank = %d",
|
|
rank));
|
|
if (axis < 0) axis += (rank + 1);
|
|
|
|
auto vec = framework::vectorize<int>(input_dims[0]);
|
|
vec.insert(vec.begin() + axis, input_dims.size());
|
|
ctx->SetOutputDim(framework::GradVarName("X"), framework::make_ddim(vec));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace plat = paddle::platform;
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(unstack, ops::UnStackOp, ops::UnStackOpMaker,
|
|
ops::UnStackGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::UnStackGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(unstack_grad, ops::UnStackGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(unstack,
|
|
ops::UnStackKernel<plat::CPUDeviceContext, float>,
|
|
ops::UnStackKernel<plat::CPUDeviceContext, double>,
|
|
ops::UnStackKernel<plat::CPUDeviceContext, int>,
|
|
ops::UnStackKernel<plat::CPUDeviceContext, int64_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(unstack_grad,
|
|
ops::UnStackGradKernel<plat::CPUDeviceContext, float>,
|
|
ops::UnStackGradKernel<plat::CPUDeviceContext, double>,
|
|
ops::UnStackGradKernel<plat::CPUDeviceContext, int>,
|
|
ops::UnStackGradKernel<plat::CPUDeviceContext, int64_t>);
|