You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
5.0 KiB
133 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "PadOp.h"
|
|
#include "hl_base.h"
|
|
|
|
namespace paddle {
|
|
|
|
__global__ void KePad(real* outputs,
|
|
const real* inputs,
|
|
int inC,
|
|
int inH,
|
|
int inW,
|
|
int padc,
|
|
int padh,
|
|
int padw,
|
|
int outC,
|
|
int outH,
|
|
int outW,
|
|
int nthreads) {
|
|
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
|
if (idx < nthreads) {
|
|
const int w = idx % inW;
|
|
const int h = (idx / inW) % inH;
|
|
const int c = (idx / inW / inH) % inC;
|
|
const int n = idx / inW / inH / inC;
|
|
|
|
const int off = ((n * outC + c + padc) * outH + h + padh) * outW + padw + w;
|
|
outputs[off] = inputs[idx];
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void Pad<DEVICE_TYPE_GPU>(real* outputs,
|
|
const real* inputs,
|
|
const int num,
|
|
const int inC,
|
|
const int inH,
|
|
const int inW,
|
|
const PadConf& pad) {
|
|
size_t nth = num * inC * inH * inW;
|
|
int blockSize = 1024;
|
|
int gridSize = (nth + 1024 - 1) / 1024;
|
|
int cstart = pad.channel[0], cend = pad.channel[1];
|
|
int hstart = pad.height[0], hend = pad.height[1];
|
|
int wstart = pad.width[0], wend = pad.width[1];
|
|
int outC = inC + cstart + cend;
|
|
int outH = inH + hstart + hend;
|
|
int outW = inW + wstart + wend;
|
|
KePad<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(outputs,
|
|
inputs,
|
|
inC,
|
|
inH,
|
|
inW,
|
|
cstart,
|
|
hstart,
|
|
wstart,
|
|
outC,
|
|
outH,
|
|
outW,
|
|
nth);
|
|
CHECK_SYNC("Pad");
|
|
}
|
|
|
|
__global__ void KePadDiff(real* inGrad,
|
|
const real* outGrad,
|
|
int inC,
|
|
int inH,
|
|
int inW,
|
|
int padc,
|
|
int padh,
|
|
int padw,
|
|
int outC,
|
|
int outH,
|
|
int outW,
|
|
int nthreads) {
|
|
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
|
if (idx < nthreads) {
|
|
const int w = idx % inW;
|
|
const int h = (idx / inW) % inH;
|
|
const int c = (idx / inW / inH) % inC;
|
|
const int n = idx / inW / inH / inC;
|
|
|
|
const int off = ((n * outC + c + padc) * outH + h + padh) * outW + padw + w;
|
|
inGrad[idx] += outGrad[off];
|
|
}
|
|
}
|
|
|
|
template <>
|
|
void PadGrad<DEVICE_TYPE_GPU>(real* inGrad,
|
|
const real* outGrad,
|
|
const int num,
|
|
const int inC,
|
|
const int inH,
|
|
const int inW,
|
|
const PadConf& pad) {
|
|
int nth = num * inC * inH * inW;
|
|
int blockSize = 1024;
|
|
int gridSize = (nth + 1024 - 1) / 1024;
|
|
int cstart = pad.channel[0], cend = pad.channel[1];
|
|
int hstart = pad.height[0], hend = pad.height[1];
|
|
int wstart = pad.width[0], wend = pad.width[1];
|
|
int outC = inC + cstart + cend;
|
|
int outH = inH + hstart + hend;
|
|
int outW = inW + wstart + wend;
|
|
KePadDiff<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>(inGrad,
|
|
outGrad,
|
|
inC,
|
|
inH,
|
|
inW,
|
|
cstart,
|
|
hstart,
|
|
wstart,
|
|
outC,
|
|
outH,
|
|
outW,
|
|
nth);
|
|
CHECK_SYNC("PadGrad");
|
|
}
|
|
|
|
} // namespace paddle
|