You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
282 lines
12 KiB
282 lines
12 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/lstm_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class LSTMOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
|
"Input(Input) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Weight"),
|
|
"Input(Weight) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Bias"),
|
|
"Input(Bias) of LSTM should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
|
|
"Output(Hidden) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
|
|
"Output(Cell) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
|
|
"Output(BatchGate) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
|
|
"Output(BatchGate) of LSTM should not be null.");
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
|
|
|
|
if (ctx->HasInput("H0")) {
|
|
PADDLE_ENFORCE(ctx->HasInput("C0"),
|
|
"Input(Cell) and Input(Hidden) of LSTM should not "
|
|
"be null at the same time.");
|
|
auto h_dims = ctx->GetInputDim("H0");
|
|
auto c_dims = ctx->GetInputDim("C0");
|
|
PADDLE_ENFORCE(h_dims == c_dims,
|
|
"The dimension of Input(H0) and Input(C0) "
|
|
"should be the same.");
|
|
}
|
|
|
|
int frame_size = in_dims[1] / 4;
|
|
auto w_dims = ctx->GetInputDim("Weight");
|
|
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
|
|
"The rank of Input(Weight) should be 2.");
|
|
PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
|
|
"The first dimension of Input(Weight) "
|
|
"should be %d.",
|
|
frame_size);
|
|
PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
|
|
"The second dimension of Input(Weight) "
|
|
"should be 4 * %d.",
|
|
frame_size);
|
|
|
|
auto b_dims = ctx->GetInputDim("Bias");
|
|
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
|
|
PADDLE_ENFORCE_EQ(b_dims[0], 1,
|
|
"The first dimension of Input(Bias) should be 1.");
|
|
|
|
if (ctx->Attrs().Get<bool>("use_peepholes")) {
|
|
PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
|
|
"The second dimension of Input(Bias) should be "
|
|
"7 * %d if enable peepholes connection",
|
|
frame_size);
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
|
|
"The second dimension of Input(Bias) should be "
|
|
"4 * %d if disable peepholes connection",
|
|
frame_size);
|
|
}
|
|
|
|
framework::DDim out_dims({in_dims[0], frame_size});
|
|
ctx->SetOutputDim("Hidden", out_dims);
|
|
ctx->SetOutputDim("Cell", out_dims);
|
|
ctx->SetOutputDim("BatchGate", in_dims);
|
|
ctx->SetOutputDim("BatchCellPreAct", out_dims);
|
|
ctx->ShareLoD("Input", "Hidden");
|
|
ctx->ShareLoD("Input", "Cell");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetActualKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LSTMOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Input",
|
|
"(LoDTensor) the first input is a LodTensor, which support "
|
|
"variable-time length input sequence. The underlying tensor in "
|
|
"this LoDTensor is a matrix with shape (T X 4D), where T is the "
|
|
"total time steps in this mini-batch, D is the hidden size.");
|
|
AddInput("H0",
|
|
"(Tensor, optional) the initial hidden state is an optional "
|
|
"input. This is a tensor with shape (N x D), where N is the "
|
|
"batch size and D is the hidden size.")
|
|
.AsDispensable();
|
|
AddInput("C0",
|
|
"(Tensor, optional) the initial cell state is an optional "
|
|
"input. This is a tensor with shape (N x D), where N is the "
|
|
"batch size. `H0` and `C0` can be NULL but only at the same time")
|
|
.AsDispensable();
|
|
AddInput("Weight",
|
|
"(Tensor) the learnable hidden-hidden weights."
|
|
" - The shape is (D x 4D), where D is the hidden size. "
|
|
" - Weight = {W_ch, W_ih, W_fh, W_oh}");
|
|
AddInput("Bias",
|
|
"(Tensor) the learnable weights, which contains two parts: "
|
|
"input-hidden bias weight and peephole connections weight if "
|
|
"setting `use_peepholes` True. "
|
|
"1. `use_peepholes = False` "
|
|
" - The shape is (1 x 4D). "
|
|
" - Bias = {b_c, b_i, b_f, b_o}."
|
|
"2. `use_peepholes = True` "
|
|
" - The shape is (1 x 7D). "
|
|
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
|
|
AddOutput("Hidden",
|
|
"(LoDTensor) the hidden state of LSTM operator. "
|
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
|
AddOutput("Cell",
|
|
"(LoDTensor) the cell state of LSTM operator. "
|
|
"The shape is (T x D), and lod is the same with the `Input`.");
|
|
AddOutput("BatchGate",
|
|
"(LoDTensor) This LoDTensor contains input gate, forget gate "
|
|
"and output gate after the nonlinear computation. This "
|
|
"LoDTensor has the same shape as the reorganized input, which "
|
|
"is also be called batch input. The LoD size is 2. The first "
|
|
"LoD is the batch offsets and the second LoD contains the "
|
|
"indexes, which denote the position of reorganized sequence "
|
|
"in the raw input.")
|
|
.AsIntermediate();
|
|
AddOutput("BatchCellPreAct",
|
|
"(LoDTensor) This LoDTensor is obtained in the forward and used "
|
|
"in the backward.")
|
|
.AsIntermediate();
|
|
AddAttr<bool>("use_peepholes",
|
|
"(bool, defalut: True) "
|
|
"whether to enable diagonal/peephole connections.")
|
|
.SetDefault(true);
|
|
AddAttr<bool>("is_reverse",
|
|
"(bool, defalut: False) "
|
|
"whether to compute reversed LSTM.")
|
|
.SetDefault(false);
|
|
AddAttr<std::string>(
|
|
"gate_activation",
|
|
"(string, default: sigmoid)"
|
|
"The activation for input gate, forget gate and output "
|
|
"gate, `sigmoid` by default.")
|
|
.SetDefault("sigmoid")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddAttr<std::string>("cell_activation",
|
|
"(string, default: tanh)"
|
|
"The activation for cell output, `tanh` by defalut.")
|
|
.SetDefault("tanh")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddAttr<std::string>("candidate_activation",
|
|
"(string, default: tanh)"
|
|
"The activation for candidate hidden state, "
|
|
"`tanh` by default.")
|
|
.SetDefault("tanh")
|
|
.InEnum({"sigmoid", "tanh", "relu", "identity"});
|
|
AddComment(R"DOC(
|
|
Long-Short Term Memory (LSTM) Operator.
|
|
|
|
The defalut implementation is diagonal/peephole connection
|
|
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
|
|
|
|
$$
|
|
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) \\
|
|
|
|
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) \\
|
|
|
|
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) \\
|
|
|
|
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) \\
|
|
|
|
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
|
|
|
|
h_t = o_t \odot act_h(c_t)
|
|
$$
|
|
|
|
where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
|
|
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
|
|
are diagonal weight matrices for peephole connections. In our implementation,
|
|
we use vectors to reprenset these diagonal weight matrices. The b terms
|
|
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
|
|
is the non-line activations, such as logistic sigmoid function, and
|
|
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
|
|
and cell activation vectors, respectively, all of which have the same size as
|
|
the cell output activation vector $h$.
|
|
|
|
The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
|
|
are the cell input and cell output activation functions and `tanh` is usually
|
|
used for them. $\tilde{c_t}$ is also called candidate hidden state,
|
|
which is computed based on the current input and the previous hidden state.
|
|
|
|
Set `use_peepholes` False to disable peephole connection. The formula
|
|
is omitted here, please refer to the paper
|
|
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
|
|
|
|
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
|
|
operations on the input $x_{t}$ are NOT included in this operator.
|
|
Users can choose to use fully-connect operator before LSTM operator.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class LSTMGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Input"),
|
|
"Input(Input) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Hidden"),
|
|
"Input(Hidden) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Cell"),
|
|
"Input(Cell) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Weight"),
|
|
"Input(Weight) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Bias"),
|
|
"Input(Bias) of LSTM should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
|
|
"Input(BatchGate) of LSTM should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
|
|
"Input(BatchGate) of LSTM should not be null.");
|
|
|
|
auto SetOutGradDim = [&ctx](const std::string& name) {
|
|
auto g_name = framework::GradVarName(name);
|
|
if (ctx->HasOutput(g_name))
|
|
ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
|
|
};
|
|
|
|
SetOutGradDim("Input");
|
|
SetOutGradDim("Weight");
|
|
SetOutGradDim("Bias");
|
|
SetOutGradDim("H0");
|
|
SetOutGradDim("C0");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetActualKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("Input")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
lstm_grad, ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, double>);
|