You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.5 KiB
78 lines
2.5 KiB
#edit-mode: -*- python -*-
|
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle.trainer_config_helpers import *
|
|
|
|
TrainData(SimpleData(
|
|
files = "trainer/tests/sample_filelist.txt",
|
|
feat_dim = 3,
|
|
context_len = 0,
|
|
buffer_capacity = 1000000,
|
|
async_load_data = False))
|
|
|
|
settings(batch_size = 100)
|
|
|
|
data = data_layer(name='input', size=3)
|
|
|
|
wt = data_layer(name='weight', size=1)
|
|
|
|
fc1 = fc_layer(input=data, size=5,
|
|
bias_attr=True,
|
|
act=SigmoidActivation())
|
|
|
|
fc2 = fc_layer(input=data, size=12,
|
|
bias_attr=True,
|
|
param_attr=ParamAttr(name='sharew'),
|
|
act=LinearActivation())
|
|
|
|
fc3 = fc_layer(input=data, size=3,
|
|
bias_attr=True,
|
|
act=TanhActivation())
|
|
|
|
fc4 = fc_layer(input=data, size=5,
|
|
bias_attr=True,
|
|
layer_attr=ExtraAttr(drop_rate=0.5),
|
|
act=SquareActivation())
|
|
|
|
pool = img_pool_layer(input=fc2,
|
|
pool_size=2,
|
|
pool_size_y=3,
|
|
num_channels=1,
|
|
padding=1,
|
|
padding_y=2,
|
|
stride=2,
|
|
stride_y=3,
|
|
pool_type=CudnnAvgPooling())
|
|
|
|
concat = concat_layer(input=[fc3, fc4])
|
|
|
|
with mixed_layer(size=3, act=SoftmaxActivation()) as output:
|
|
output += full_matrix_projection(input=fc1)
|
|
output += trans_full_matrix_projection(input=fc2,
|
|
param_attr=ParamAttr(name='sharew'))
|
|
output += full_matrix_projection(input=concat)
|
|
output += identity_projection(input=fc3)
|
|
|
|
lbl = data_layer(name='label', size=1)
|
|
|
|
cost = classification_cost(input=output, label=lbl, weight=wt,
|
|
layer_attr=ExtraAttr(device=-1))
|
|
|
|
nce = nce_layer(input=fc2, label=lbl, weight=wt,
|
|
num_classes=3,
|
|
neg_distribution=[0.1, 0.3, 0.6])
|
|
|
|
outputs(cost, nce)
|