You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.2 KiB
72 lines
2.2 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
|
|
#pragma once
|
|
|
|
#include "PoolLayer.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* @brief CudnnPoolLayer is subclass of PoolLayer, which is implemented by
|
|
* cudnn api and only supports GPU.
|
|
*
|
|
* The config file api is img_pool_layer.
|
|
*/
|
|
|
|
class CudnnPoolLayer : public PoolLayer {
|
|
protected:
|
|
int windowHeight, windowWidth;
|
|
int heightPadding, widthPadding, strideHeight, strideWidth;
|
|
int imageH_, imageW_, outputH_, outputW_;
|
|
/// mode_ is poolint type, inlcuding "cudnn-max-pool", "cudnn-avg-pool"
|
|
/// "cudnn-avg-excl-pad-pool".
|
|
hl_pooling_mode_t mode_;
|
|
/// cudnn tensor descriptor for input.
|
|
hl_tensor_descriptor inputDesc_;
|
|
/// cudnn tensor descriptor for output.
|
|
hl_tensor_descriptor outputDesc_;
|
|
/// A description of a pooling operation.
|
|
hl_pooling_descriptor poolingDesc_;
|
|
|
|
public:
|
|
static bool typeCheck(const std::string& poolType,
|
|
hl_pooling_mode_t* mode = nullptr);
|
|
explicit CudnnPoolLayer(const LayerConfig& config);
|
|
~CudnnPoolLayer();
|
|
virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
/**
|
|
* Reshape input and output tensor descriptor.
|
|
* The batch size maybe change during training in last batch of each pass.
|
|
* So reshaping is needed.
|
|
*/
|
|
void reshape(int batchSize);
|
|
virtual void forward(PassType passType);
|
|
virtual void backward(const UpdateCallback& callback = nullptr);
|
|
|
|
/**
|
|
* Calculate output size according window size of pooling.
|
|
*/
|
|
int outputSize(int imageSize, int windowSize, int padding, int stride) {
|
|
int outputSize;
|
|
outputSize =
|
|
(imageSize - windowSize + 2 * padding + stride - 1) / stride + 1;
|
|
return outputSize;
|
|
}
|
|
};
|
|
|
|
} // namespace paddle
|