You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							209 lines
						
					
					
						
							7.8 KiB
						
					
					
				
			
		
		
	
	
							209 lines
						
					
					
						
							7.8 KiB
						
					
					
				| //   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include "paddle/fluid/framework/details/all_reduce_op_handle.h"
 | |
| #include <algorithm>
 | |
| #include "paddle/fluid/framework/details/container_cast.h"
 | |
| #include "paddle/fluid/framework/details/reduce_and_gather.h"
 | |
| #include "paddle/fluid/framework/details/variable_visitor.h"
 | |
| #include "paddle/fluid/framework/operator.h"
 | |
| #include "paddle/fluid/platform/gpu_info.h"
 | |
| #include "paddle/fluid/platform/profiler.h"
 | |
| 
 | |
| #ifdef PADDLE_WITH_NCCL
 | |
| DECLARE_bool(sync_nccl_allreduce);
 | |
| #endif
 | |
| 
 | |
| namespace paddle {
 | |
| namespace framework {
 | |
| namespace details {
 | |
| 
 | |
| #if defined(PADDLE_WITH_NCCL)
 | |
| AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
 | |
|                                      const std::vector<Scope *> &local_scopes,
 | |
|                                      const std::vector<platform::Place> &places,
 | |
|                                      const platform::NCCLCommunicator *ctxs)
 | |
|     : NCCLOpHandleBase(node, places, ctxs), local_scopes_(local_scopes) {
 | |
|   PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
 | |
| }
 | |
| #else
 | |
| AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
 | |
|                                      const std::vector<Scope *> &local_scopes,
 | |
|                                      const std::vector<platform::Place> &places)
 | |
|     : OpHandleBase(node), local_scopes_(local_scopes), places_(places) {
 | |
|   PADDLE_ENFORCE_EQ(places_.size(), local_scopes_.size());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void AllReduceOpHandle::RunImpl() {
 | |
|   platform::RecordEvent record_event(Name());
 | |
| 
 | |
|   WaitInputVarGenerated();
 | |
|   std::vector<VarHandleBase *> inputs = this->Inputs();
 | |
|   std::vector<VarHandleBase *> outputs = this->Outputs();
 | |
|   auto in_var_handles = DynamicCast<VarHandle>(inputs);
 | |
|   auto out_var_handles = DynamicCast<VarHandle>(outputs);
 | |
|   AllReduceImpl(in_var_handles, out_var_handles);
 | |
| }
 | |
| 
 | |
| void AllReduceOpHandle::AllReduceImpl(
 | |
|     const std::vector<VarHandle *> &in_var_handles,
 | |
|     const std::vector<VarHandle *> &out_var_handles) {
 | |
|   size_t num_places = places_.size();
 | |
|   PADDLE_ENFORCE_EQ(
 | |
|       in_var_handles.size(), num_places,
 | |
|       "The NoDummyInputSize should be equal to the number of places.");
 | |
|   PADDLE_ENFORCE_EQ(
 | |
|       in_var_handles.size(), out_var_handles.size(),
 | |
|       "The NoDummyInputSize and NoDummyOutputSize should be equal.");
 | |
|   PADDLE_ENFORCE_EQ(local_exec_scopes_.size(), num_places);
 | |
| 
 | |
|   std::vector<const void *> lod_tensor_data;
 | |
|   std::vector<platform::Place> places;
 | |
|   lod_tensor_data.reserve(num_places);
 | |
|   places.reserve(num_places);
 | |
|   int64_t numel = -1;
 | |
|   bool is_gpu_place = false;
 | |
|   auto dtype = static_cast<framework::proto::VarType::Type>(0);
 | |
|   for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
 | |
|     auto &local_scope = local_exec_scopes_[i];
 | |
|     auto var = local_scope->FindVar(in_var_handles[i]->name());
 | |
|     PADDLE_ENFORCE_NOT_NULL(var, "%s is not found int scope.",
 | |
|                             in_var_handles[i]->name());
 | |
|     auto &lod_tensor = var->Get<LoDTensor>();
 | |
| 
 | |
|     if (i == 0) {
 | |
|       numel = static_cast<int64_t>(lod_tensor.numel());
 | |
|       // only enforce place0, we will enforce other palce numel == place0 numel
 | |
|       PADDLE_ENFORCE_GT(
 | |
|           numel, 0, platform::errors::InvalidArgument(
 | |
|                         "The numel of tensos=[%s] must > 0. But now numel=[%d]",
 | |
|                         in_var_handles[i]->name(), numel));
 | |
|       dtype = lod_tensor.type();
 | |
|       is_gpu_place = platform::is_gpu_place(lod_tensor.place());
 | |
|     }
 | |
|     PADDLE_ENFORCE_EQ(numel, static_cast<int64_t>(lod_tensor.numel()));
 | |
|     PADDLE_ENFORCE_EQ(dtype, lod_tensor.type());
 | |
|     PADDLE_ENFORCE_EQ(is_gpu_place, platform::is_gpu_place(lod_tensor.place()));
 | |
| 
 | |
|     lod_tensor_data.emplace_back(lod_tensor.data<void>());
 | |
|     places.emplace_back(lod_tensor.place());
 | |
| 
 | |
|     VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
 | |
|              << ", out_name:" << out_var_handles[i]->name();
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
 | |
|                       "The name of input and output should be equal.");
 | |
|   }
 | |
| 
 | |
|   std::vector<std::string> grad_var_names;
 | |
|   grad_var_names.reserve(num_places);
 | |
|   for (auto &out_var : out_var_handles) {
 | |
|     grad_var_names.emplace_back(out_var->Name());
 | |
|   }
 | |
| 
 | |
|   AllReduceFunc(lod_tensor_data, dtype, numel, places, grad_var_names);
 | |
| }
 | |
| 
 | |
| void AllReduceOpHandle::AllReduceFunc(
 | |
|     std::vector<const void *> lod_tensor_data,
 | |
|     const framework::proto::VarType::Type &dtype, int64_t numel,
 | |
|     const std::vector<platform::Place> &places,
 | |
|     const std::vector<std::string> &out_var_names) {
 | |
|   if (is_gpu_place(places[0])) {
 | |
| #if defined(PADDLE_WITH_NCCL)
 | |
|     PADDLE_ENFORCE_NOT_NULL(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
 | |
|     ncclDataType_t nccl_dtype = platform::ToNCCLDataType(dtype);
 | |
|     std::vector<std::function<void()>> all_reduce_calls;
 | |
|     for (size_t i = 0; i < local_exec_scopes_.size(); ++i) {
 | |
|       auto &p = places[i];
 | |
|       void *buffer = const_cast<void *>(lod_tensor_data.at(i));
 | |
|       all_reduce_calls.emplace_back([=] {
 | |
|         NCCLAllReduce(p, buffer, buffer, numel, nccl_dtype, ncclSum);
 | |
|       });
 | |
|     }
 | |
|     NCCLAllReduceFunc(all_reduce_calls);
 | |
| #else
 | |
|     PADDLE_THROW("Not compiled with CUDA.");
 | |
| #endif
 | |
|   } else {  // Special handle CPU only Operator's gradient. Like CRF
 | |
|     auto &trg = *local_exec_scopes_[0]
 | |
|                      ->FindVar(out_var_names[0])
 | |
|                      ->GetMutable<LoDTensor>();
 | |
| 
 | |
|     // Reduce All Tensor to trg in CPU
 | |
|     ReduceBufferData func(lod_tensor_data, trg.data<void>(), numel);
 | |
|     VisitDataType(trg.type(), func);
 | |
| 
 | |
|     for (size_t i = 1; i < local_exec_scopes_.size(); ++i) {
 | |
|       auto &scope = local_exec_scopes_[i];
 | |
|       auto &p = places[i];
 | |
|       auto *var = scope->FindVar(out_var_names[i]);
 | |
| 
 | |
|       size_t size = numel * SizeOfType(trg.type());
 | |
|       RunAndRecordEvent(p, [&trg, var, p, size] {
 | |
|         auto dst_ptr = var->GetMutable<framework::LoDTensor>()->data<void>();
 | |
|         platform::CPUPlace cpu_place;
 | |
|         memory::Copy(cpu_place, dst_ptr, cpu_place, trg.data<void>(), size);
 | |
|       });
 | |
|     }
 | |
|   }
 | |
|   VLOG(10) << Name() << " size:" << numel * SizeOfType(dtype);
 | |
| }
 | |
| 
 | |
| #if defined(PADDLE_WITH_NCCL)
 | |
| void AllReduceOpHandle::NCCLAllReduceFunc(
 | |
|     const std::vector<std::function<void()>> &all_reduce_calls) {
 | |
|   this->RunAndRecordEvent([&] {
 | |
|     if (all_reduce_calls.size() == 1UL) {
 | |
|       // Do not use NCCLGroup when manage NCCL by per thread per device
 | |
|       all_reduce_calls[0]();
 | |
|     } else {
 | |
|       platform::NCCLGroupGuard guard;
 | |
|       for (auto &call : all_reduce_calls) {
 | |
|         call();
 | |
|       }
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   SyncNCCLAllReduce();
 | |
| }
 | |
| 
 | |
| void AllReduceOpHandle::SyncNCCLAllReduce() {
 | |
|   if (FLAGS_sync_nccl_allreduce) {
 | |
|     for (auto &p : places_) {
 | |
|       int dev_id = boost::get<platform::CUDAPlace>(p).device;
 | |
|       auto *nccl_ctxs =
 | |
|           nccl_ctxs_->GetRunEnvNCCLCtx(run_order_, use_hierarchical_allreduce_);
 | |
|       auto &nccl_ctx = nccl_ctxs->at(dev_id);
 | |
|       auto stream = nccl_ctx.stream();
 | |
|       cudaError_t e_sync = cudaStreamSynchronize(stream);
 | |
|       if (e_sync != 0) {
 | |
|         LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
 | |
|       }
 | |
| 
 | |
|       cudaError_t e_get = cudaGetLastError();
 | |
|       if (e_get != 0) {
 | |
|         LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
 | |
|                    << " errno:" << e_get;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
 | |
| }  // namespace details
 | |
| }  // namespace framework
 | |
| }  // namespace paddle
 |