You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							138 lines
						
					
					
						
							4.4 KiB
						
					
					
				
			
		
		
	
	
							138 lines
						
					
					
						
							4.4 KiB
						
					
					
				| //   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/details/reduce_and_gather.h"
 | |
| #include "paddle/fluid/framework/lod_tensor.h"
 | |
| #include "paddle/fluid/framework/selected_rows.h"
 | |
| namespace paddle {
 | |
| namespace framework {
 | |
| namespace details {
 | |
| 
 | |
| struct ReduceLoDTensor {
 | |
|   const std::vector<const LoDTensor *> &src_tensors_;
 | |
|   LoDTensor &dst_tensor_;
 | |
| 
 | |
|   ReduceLoDTensor(const std::vector<const LoDTensor *> &src, LoDTensor *dst)
 | |
|       : src_tensors_(src), dst_tensor_(*dst) {}
 | |
| 
 | |
|   template <typename T>
 | |
|   void apply() const {
 | |
|     PADDLE_ENFORCE(!src_tensors_.empty());
 | |
|     auto &t0 = *src_tensors_[0];
 | |
|     PADDLE_ENFORCE_NE(t0.numel(), 0);
 | |
| 
 | |
|     dst_tensor_.Resize(t0.dims());
 | |
|     T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
 | |
| 
 | |
|     for (size_t i = 0; i < src_tensors_.size(); ++i) {
 | |
|       auto &t = *src_tensors_[i];
 | |
|       if (dst == t.data<T>()) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
 | |
|       PADDLE_ENFORCE_EQ(t.type(), t0.type());
 | |
|       std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
 | |
|                      [](T a, T b) -> T { return a + b; });
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct ReduceBufferData {
 | |
|   const std::vector<const void *> &src_data_;
 | |
|   void *dst_data_;
 | |
|   int64_t numel_;
 | |
| 
 | |
|   ReduceBufferData(const std::vector<const void *> &src, void *dst,
 | |
|                    int64_t numel)
 | |
|       : src_data_(src), dst_data_(dst), numel_(numel) {}
 | |
| 
 | |
|   template <typename T>
 | |
|   void apply() const {
 | |
|     T *dst_data = reinterpret_cast<T *>(dst_data_);
 | |
|     for (size_t i = 0; i < src_data_.size(); ++i) {
 | |
|       auto srd_data = reinterpret_cast<const T *>(src_data_[i]);
 | |
|       VLOG(10) << "dst: " << dst_data_ << ", " << srd_data;
 | |
|       if (srd_data == dst_data_) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       std::transform(srd_data, srd_data + numel_, dst_data, dst_data,
 | |
|                      [](T a, T b) -> T { return a + b; });
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct GatherLocalSelectedRowsFunctor {
 | |
|   GatherLocalSelectedRowsFunctor(
 | |
|       const std::vector<const SelectedRows *> &src_selected_rows,
 | |
|       const std::vector<platform::Place> &in_places,
 | |
|       const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes,
 | |
|       const platform::Place &out_place, SelectedRows *dst_selected_rows)
 | |
|       : dev_ctxes_(dev_ctxes),
 | |
|         in_places_(in_places),
 | |
|         out_place_(out_place),
 | |
|         dst_selected_rows_(dst_selected_rows) {
 | |
|     PADDLE_ENFORCE_EQ(src_selected_rows.empty(), false);
 | |
| 
 | |
|     std::vector<int64_t> out_rows;
 | |
| 
 | |
|     for (auto in_sr_ptr : src_selected_rows) {
 | |
|       auto &in_sr = *in_sr_ptr;
 | |
|       in_tensors_.emplace_back(in_sr.value());
 | |
|       out_rows.insert(out_rows.end(), in_sr.rows().begin(), in_sr.rows().end());
 | |
|     }
 | |
| 
 | |
|     auto &pre_in = src_selected_rows[0];
 | |
| 
 | |
|     auto &dst_tensor = *dst_selected_rows_;
 | |
|     dst_tensor.set_height(pre_in->height());
 | |
|     dst_tensor.set_rows(out_rows);
 | |
|     size_t rows = out_rows.size();
 | |
|     DDim out_dim = pre_in->GetCompleteDims();
 | |
|     out_dim[0] = static_cast<int64_t>(rows);
 | |
|     dst_tensor.mutable_value()->Resize(out_dim);
 | |
|     dst_tensor.mutable_value()->mutable_data(out_place, pre_in->value().type());
 | |
|   }
 | |
| 
 | |
|   void operator()() {
 | |
|     auto *out_tensor = dst_selected_rows_->mutable_value();
 | |
|     // copy
 | |
|     int s = 0, e = 0;
 | |
|     for (size_t j = 0; j < in_tensors_.size(); ++j) {
 | |
|       e += in_tensors_[j].dims()[0];
 | |
|       auto sub_out = out_tensor->Slice(s, e);
 | |
|       paddle::framework::TensorCopy(in_tensors_[j], out_place_,
 | |
|                                     *(dev_ctxes_.at(in_places_[j])), &sub_out);
 | |
|       s = e;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes_;
 | |
|   std::vector<platform::Place> in_places_;
 | |
|   std::vector<Tensor> in_tensors_;
 | |
| 
 | |
|   platform::Place out_place_;
 | |
|   SelectedRows *dst_selected_rows_;
 | |
| };
 | |
| 
 | |
| }  // namespace details
 | |
| }  // namespace framework
 | |
| }  // namespace paddle
 |