You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/conv_cudnn_op.cu

1153 lines
46 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_cudnn_helper.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
return dev_ctx.GetComputeCapability() >= 70;
}
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
"It must use CUDAPlace.");
const Tensor* input = ctx.Input<Tensor>("Input");
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
output->mutable_data<T>(ctx.GetPlace());
const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
bool exhaustive_search =
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
if (exhaustive_search && FLAGS_cudnn_deterministic) {
PADDLE_THROW(
"Cann't set exhaustive_search True and "
"FLAGS_cudnn_deterministic True at same time.");
}
const std::string padding_algorithm =
ctx.Attr<std::string>("padding_algorithm");
const std::string data_format = ctx.Attr<std::string>("data_format");
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
auto dtype = platform::CudnnDataType<T>::type;
// Tensor Core introduced from Volta GPUs supports more faster conv op
// with FP16 in NHWC data format.
const bool compute_in_nhwc =
dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
// We will only do data format conversion from NHWC to NCHW.
// cudnn will convert NCHW to NHWC automatically on Tensor Core.
auto compute_format =
compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
VLOG(3) << "Compute ConvOp with cuDNN:"
<< " data_format=" << data_format << " compute_format="
<< (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");
// ------------ transformed tensor -----------
Tensor transformed_input_channel(input->type());
Tensor transformed_output(output->type());
Tensor transformed_filter_channel(filter->type());
T* output_data = nullptr;
if (channel_last && compute_format == DataLayout::kNCHW) {
VLOG(3) << "Transform input tensor from NHWC to NCHW.";
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, input, &transformed_input_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, input, &transformed_input_channel);
ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
&transformed_output);
} else {
transformed_input_channel.ShareDataWith(*input);
transformed_output.ShareDataWith(*output);
}
if (compute_format == DataLayout::kNHWC) {
VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
ResizeToChannelLast<platform::CUDADeviceContext, T>(
ctx, filter, &transformed_filter_channel);
TransToChannelLast<platform::CUDADeviceContext, T>(
ctx, filter, &transformed_filter_channel);
} else {
transformed_filter_channel.ShareDataWith(*filter);
}
output_data = transformed_output.data<T>();
// update padding and dilation
auto in_dims = transformed_input_channel.dims();
auto filter_dims = transformed_filter_channel.dims();
framework::DDim in_data_dims;
framework::DDim filter_data_dims;
if (compute_format == DataLayout::kNCHW) {
in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
filter_data_dims =
framework::slice_ddim(filter_dims, 2, filter_dims.size());
} else {
in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
filter_data_dims =
framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
}
std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
in_data_dims, strides, ksize);
int data_dim = strides.size(); // 2d or 3d
bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
Tensor transformed_input;
std::vector<int> padding_common(data_dim, 0);
if (!is_sys_pad) {
std::vector<int> padding_diff(data_dim);
std::vector<int> new_input_shape_vec(data_dim + 2);
new_input_shape_vec[0] = transformed_input_channel.dims()[0];
if (compute_format == DataLayout::kNCHW) {
new_input_shape_vec[1] = transformed_input_channel.dims()[1];
} else {
new_input_shape_vec[data_dim + 1] =
transformed_input_channel.dims()[data_dim + 1];
}
std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
0);
for (size_t i = 0; i < data_dim; ++i) {
padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
if (compute_format == DataLayout::kNCHW) {
new_input_shape_vec[i + 2] =
transformed_input_channel.dims()[i + 2] + padding_diff[i];
} else {
new_input_shape_vec[i + 1] =
transformed_input_channel.dims()[i + 1] + padding_diff[i];
}
if (compute_format == DataLayout::kNCHW) {
input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
} else {
input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
}
}
framework::DDim new_input_shape(
framework::make_ddim(new_input_shape_vec));
transformed_input.Resize(new_input_shape);
auto& dev_ctx =
ctx.template device_context<paddle::platform::CUDADeviceContext>();
transformed_input =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
const int rank = transformed_input_channel.dims().size();
T pad_value(0.0);
switch (rank) {
case 4: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_input_channel, pad_value,
&transformed_input);
} break;
case 5: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_input_channel, pad_value,
&transformed_input);
} break;
default:
PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
}
} else {
transformed_input.ShareDataWith(transformed_input_channel);
if (paddings.size() == data_dim) {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[i];
}
} else {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[2 * i];
}
}
}
const T* input_data = transformed_input.data<T>();
const T* filter_data = transformed_filter_channel.data<T>();
// ------------------- cudnn descriptors ---------------------
ConvArgs args{&transformed_input,
&transformed_filter_channel,
&transformed_output,
strides,
padding_common,
dilations,
dtype};
auto handle = dev_ctx.cudnn_handle();
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
: DataLayout::kNCHW;
if (transformed_input.dims().size() == 5) {
layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
: DataLayout::kNCDHW;
}
auto layout_format = GetCudnnTensorFormat(layout);
args.handle = handle;
args.cdesc.set(dtype, padding_common, strides, dilations);
#if CUDNN_VERSION_MIN(7, 0, 1)
// cudnn 7 can support groups, no need to do it manually
// FIXME(typhoonzero): find a better way to disable groups
// rather than setting it to 1.
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
groups));
groups = 1;
#endif
args.idesc.set(transformed_input, layout_format);
args.wdesc.set(transformed_filter_channel, layout_format, groups);
args.odesc.set(transformed_output, layout_format);
int i_n, i_c, i_d, i_h, i_w;
int o_n, o_c, o_d, o_h, o_w;
if (compute_format == DataLayout::kNHWC) {
GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
&i_h, &i_w);
GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
&o_h, &o_w);
} else {
GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
&i_h, &i_w);
GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
&o_h, &o_w);
}
int group_offset_in = i_c / groups * i_h * i_w * i_d;
int group_offset_out = o_c / groups * o_h * o_w * o_d;
int group_offset_filter = transformed_filter_channel.numel() / groups;
// ------------------- cudnn conv workspace ---------------------
size_t workspace_size = 0; // final workspace to allocate.
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t algo{};
using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
algo = search::Find<T>(args, exhaustive_search, false, ctx);
workspace_size = search::GetWorkspaceSize(args, algo);
#if CUDNN_VERSION_MIN(7, 0, 1)
// when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
// FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
// in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
// FWD_ALGO_IMPLICIT_GEMM manually.
if (ctx.Attr<int>("groups") > 1) {
algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
}
#endif
// ------------------- cudnn conv forward ---------------------
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
for (int i = 0; i < groups; i++) {
workspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionForward(
handle, &alpha, args.idesc.desc(),
input_data + i * group_offset_in, args.wdesc.desc(),
filter_data + i * group_offset_filter, args.cdesc.desc(),
algo, workspace_ptr, workspace_size, &beta,
args.odesc.desc(), output_data + i * group_offset_out));
},
workspace_size);
}
if (channel_last && compute_format == DataLayout::kNCHW) {
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_output, output);
}
}
};
template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
"It must use CUDAPlace.");
auto input = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
if (input_grad) {
input_grad->mutable_data<T>(ctx.GetPlace());
}
if (filter_grad) {
filter_grad->mutable_data<T>(ctx.GetPlace());
}
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
int groups = ctx.Attr<int>("groups");
bool exhaustive_search =
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
bool deterministic = FLAGS_cudnn_deterministic;
if (exhaustive_search && deterministic) {
PADDLE_THROW(
"Can't set exhaustive_search True and "
"FLAGS_cudnn_deterministic True at same time.");
}
const std::string data_format = ctx.Attr<std::string>("data_format");
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
auto dtype = platform::CudnnDataType<T>::type;
const bool compute_in_nhwc =
dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
auto compute_format =
compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
VLOG(3) << "Compute ConvGradOp with cuDNN:"
<< " data_format=" << data_format << " compute_format="
<< (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");
// transform Tensor
Tensor transformed_input_channel(input->type());
Tensor transformed_output_grad_channel(output_grad->type());
Tensor transformed_input_grad_channel(input->type());
Tensor transformed_filter_channel(filter->type());
Tensor transformed_filter_grad_channel(filter->type());
if (channel_last && compute_format == DataLayout::kNCHW) {
VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
"NHWC to NCHW.";
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, input, &transformed_input_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, input, &transformed_input_channel);
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, output_grad, &transformed_output_grad_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, output_grad, &transformed_output_grad_channel);
if (input_grad) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, input_grad, &transformed_input_grad_channel);
}
} else {
transformed_input_channel.ShareDataWith(*input);
transformed_output_grad_channel.ShareDataWith(*output_grad);
if (input_grad) {
transformed_input_grad_channel.ShareDataWith(*input_grad);
}
}
if (compute_format == DataLayout::kNHWC) {
VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
ResizeToChannelLast<platform::CUDADeviceContext, T>(
ctx, filter, &transformed_filter_channel);
TransToChannelLast<platform::CUDADeviceContext, T>(
ctx, filter, &transformed_filter_channel);
if (filter_grad) {
ResizeToChannelLast<platform::CUDADeviceContext, T>(
ctx, filter_grad, &transformed_filter_grad_channel);
}
} else {
transformed_filter_channel.ShareDataWith(*filter);
if (filter_grad) {
transformed_filter_grad_channel.ShareDataWith(*filter_grad);
}
}
// update paddings
auto in_dims = transformed_input_channel.dims();
auto filter_dims = transformed_filter_channel.dims();
framework::DDim in_data_dims;
framework::DDim filter_data_dims;
if (compute_format == DataLayout::kNCHW) {
in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
filter_data_dims =
framework::slice_ddim(filter_dims, 2, filter_dims.size());
} else {
in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
filter_data_dims =
framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
}
std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
in_data_dims, strides, ksize);
// cuDNN only supports padding the same amount on every dimension.
// So we create a new padded input tensor.
int data_dim = strides.size(); // 2d or 3d
bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
Tensor transformed_input(input->type());
Tensor transformed_input_grad(input->type());
std::vector<int> padding_common(data_dim, 0);
std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);
if (!is_sys_pad) {
// get pad
std::vector<int> padding_diff(data_dim);
std::vector<int> new_input_shape_vec(data_dim + 2);
new_input_shape_vec[0] = transformed_input_channel.dims()[0];
if (compute_format == DataLayout::kNCHW) {
new_input_shape_vec[1] = transformed_input_channel.dims()[1];
} else {
new_input_shape_vec[data_dim + 1] =
transformed_input_channel.dims()[data_dim + 1];
}
for (size_t i = 0; i < data_dim; ++i) {
padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
if (compute_format == DataLayout::kNCHW) {
new_input_shape_vec[i + 2] =
transformed_input_channel.dims()[i + 2] + padding_diff[i];
} else {
new_input_shape_vec[i + 1] =
transformed_input_channel.dims()[i + 1] + padding_diff[i];
}
if (compute_format == DataLayout::kNCHW) {
input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
} else {
input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
}
}
framework::DDim new_input_shape(
framework::make_ddim(new_input_shape_vec));
transformed_input.Resize(new_input_shape);
transformed_input_grad.Resize(new_input_shape);
auto& dev_ctx =
ctx.template device_context<paddle::platform::CUDADeviceContext>();
transformed_input =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
if (input_grad) {
transformed_input_grad =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
}
// pad for input
const int rank = transformed_input_channel.dims().size();
T pad_value(0.0);
switch (rank) {
case 4: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_input_channel, pad_value,
&transformed_input);
} break;
case 5: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_input_channel, pad_value,
&transformed_input);
} break;
default:
PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
}
} else {
transformed_input.ShareDataWith(transformed_input_channel);
if (input_grad) {
transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
}
if (paddings.size() == data_dim) {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[i];
}
} else {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[2 * i];
}
}
}
const T* input_data = transformed_input.data<T>();
const T* output_grad_data = transformed_output_grad_channel.data<T>();
const T* filter_data = transformed_filter_channel.data<T>();
T* filter_grad_data = nullptr;
T* input_grad_data = nullptr;
T* transformed_input_grad_data = nullptr;
ConvArgs args1{&transformed_input_grad,
&transformed_filter_channel,
&transformed_output_grad_channel,
strides,
padding_common,
dilations,
dtype};
ConvArgs args2{&transformed_input,
&transformed_filter_grad_channel,
&transformed_output_grad_channel,
strides,
padding_common,
dilations,
dtype};
auto handle = dev_ctx.cudnn_handle();
DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
: DataLayout::kNCHW;
if (transformed_input.dims().size() == 5) {
layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
: DataLayout::kNCDHW;
}
auto layout_tensor = GetCudnnTensorFormat(layout);
auto workspace_handle = dev_ctx.cudnn_workspace_handle();
int i_n, i_c, i_d, i_h, i_w;
int o_n, o_c, o_d, o_h, o_w;
if (compute_format == DataLayout::kNHWC) {
GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
&i_h, &i_w);
GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
&o_c, &o_d, &o_h, &o_w);
} else {
GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
&i_h, &i_w);
GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
&o_c, &o_d, &o_h, &o_w);
}
int group_offset_in = i_c / groups * i_h * i_w * i_d;
int group_offset_out = o_c / groups * o_h * o_w * o_d;
int group_offset_filter = transformed_filter_channel.numel() / groups;
// ------------------- cudnn backward algorithm ---------------------
cudnnConvolutionBwdDataAlgo_t data_algo =
static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
cudnnConvolutionBwdFilterAlgo_t filter_algo =
static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
size_t workspace_size = 0;
int iwo_groups = groups;
int c_groups = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
iwo_groups = 1;
c_groups = groups;
groups = 1;
#endif
if (input_grad) {
// ------------------- cudnn descriptors ---------------------
input_grad_data = input_grad->data<T>();
transformed_input_grad_data = transformed_input_grad.data<T>();
args1.handle = handle;
args1.idesc.set(transformed_input_grad, layout_tensor);
args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
args1.odesc.set(transformed_output_grad_channel, layout_tensor);
args1.cdesc.set(dtype, padding_common, strides, dilations, c_groups);
using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
data_algo =
search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
workspace_size =
std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
}
if (filter_grad) {
// ------------------- cudnn descriptors ---------------------
filter_grad_data = transformed_filter_grad_channel.data<T>();
args2.handle = handle;
args2.idesc.set(transformed_input, layout_tensor);
args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
iwo_groups);
args2.odesc.set(transformed_output_grad_channel, layout_tensor);
args2.cdesc.set(dtype, padding_common, strides, dilations, c_groups);
using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
filter_algo =
search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
workspace_size = std::max(workspace_size,
search2::GetWorkspaceSize(args2, filter_algo));
}
// ------------------- cudnn conv backward data ---------------------
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
if (input_grad) {
// Because beta is zero, it is unnecessary to reset input_grad.
for (int i = 0; i < groups; i++) {
workspace_handle.RunFunc(
[&](void* cudnn_workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, args1.wdesc.desc(),
filter_data + i * group_offset_filter, args1.odesc.desc(),
output_grad_data + i * group_offset_out,
args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
workspace_size, &beta, args1.idesc.desc(),
transformed_input_grad_data + i * group_offset_in));
},
workspace_size);
}
if (!is_sys_pad) {
std::vector<int> starts(transformed_input_channel.dims().size(), 0);
std::vector<int> axes(transformed_input_channel.dims().size(), 0);
for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
starts[i] = input_pad[2 * i];
axes[i] = i;
}
transformed_input_grad_channel.mutable_data(ctx.GetPlace());
if (transformed_input_channel.dims().size() == 4) {
RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
ctx, &transformed_input_grad, &transformed_input_grad_channel,
starts, axes);
} else {
RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
ctx, &transformed_input_grad, &transformed_input_grad_channel,
starts, axes);
}
}
if (channel_last && compute_format == DataLayout::kNCHW) {
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_input_grad_channel, input_grad);
}
}
// ------------------- cudnn conv backward filter ---------------------
if (filter_grad) {
// Because beta is zero, it is unnecessary to reset filter_grad.
for (int i = 0; i < groups; i++) {
workspace_handle.RunFunc(
[&](void* cudnn_workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, args2.idesc.desc(),
input_data + i * group_offset_in, args2.odesc.desc(),
output_grad_data + i * group_offset_out,
args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
workspace_size, &beta, args2.wdesc.desc(),
filter_grad_data + i * group_offset_filter));
},
workspace_size);
}
if (compute_format == DataLayout::kNHWC) {
TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_filter_grad_channel, filter_grad);
}
}
}
};
/*
* Inputs: I, W, dO, ddI, ddW
* Outputs: ddO, dW, dI
* ddo = conv(ddI, W) + conv(I, ddW)
* dW = conv_bp_filter(ddI, dO)
* dI = conv_bp_data(ddW, dO)
*/
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
"It must use CUDAPlace.");
auto X = ctx.Input<Tensor>("Input");
auto W = ctx.Input<Tensor>("Filter");
auto dO = ctx.Input<Tensor>("DOutput");
auto ddX = ctx.Input<Tensor>("DDInput");
auto ddW = ctx.Input<Tensor>("DDFilter");
auto ddO = ctx.Output<Tensor>("DDOutput");
auto dW = ctx.Output<Tensor>("DFilter");
auto dX = ctx.Output<Tensor>("DInput");
if (ddO) {
ddO->mutable_data<T>(ctx.GetPlace());
math::SetConstant<platform::CUDADeviceContext, T> set_zero;
set_zero(dev_ctx, ddO, static_cast<T>(0));
}
if (dW) {
dW->mutable_data<T>(ctx.GetPlace());
}
if (dX) {
dX->mutable_data<T>(ctx.GetPlace());
}
// const T* x = X->data<T>();
const T* dy = dO->data<T>();
const T* w = W->data<T>();
const T* ddx = nullptr;
const T* ddw = nullptr;
T *dw, *dx, *ddy;
dw = dx = ddy = nullptr;
T* transformed_dx = nullptr;
const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
bool exhaustive_search =
FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
bool deterministic = FLAGS_cudnn_deterministic;
if (exhaustive_search && deterministic) {
PADDLE_THROW(
"Can't set exhaustive_search True and "
"FLAGS_cudnn_deterministic True at same time.");
}
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
const std::string data_format = ctx.Attr<std::string>("data_format");
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
// transform Tensors to channel first-----------
Tensor transformed_X_channel(X->type());
Tensor transformed_dO_channel(dO->type());
Tensor transformed_ddX_channel(X->type());
Tensor transformed_ddO_channel(dO->type());
Tensor transformed_dX_channel(X->type());
if (channel_last) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, X, &transformed_X_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, X, &transformed_X_channel);
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dO, &transformed_dO_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dO, &transformed_dO_channel);
if (ddX) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddX, &transformed_ddX_channel);
TransToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddX, &transformed_ddX_channel);
}
if (ddO) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, ddO, &transformed_ddO_channel);
}
if (dX) {
ResizeToChannelFirst<platform::CUDADeviceContext, T>(
ctx, dX, &transformed_dX_channel);
transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
}
} else {
transformed_X_channel = *X;
transformed_dO_channel = *dO;
if (ddX) {
transformed_ddX_channel = *ddX;
}
if (ddO) {
transformed_ddO_channel.ShareDataWith(*ddO);
}
if (dX) {
transformed_dX_channel.ShareDataWith(*dX);
}
}
auto in_dims = transformed_X_channel.dims();
auto filter_dims = W->dims();
framework::DDim in_data_dims =
framework::slice_ddim(in_dims, 2, in_dims.size());
framework::DDim filter_data_dims =
framework::slice_ddim(filter_dims, 2, filter_dims.size());
std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
in_data_dims, strides, ksize);
int data_dim = strides.size(); // 2d or 3d
bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
Tensor transformed_X(X->type());
Tensor transformed_ddX(X->type());
Tensor transformed_dX(X->type());
std::vector<int> padding_common(data_dim, 0);
std::vector<int> input_pad(X->dims().size() * 2, 0);
if (!is_sys_pad) {
// get pad
std::vector<int> padding_diff(data_dim);
std::vector<int> new_input_shape_vec(data_dim + 2);
new_input_shape_vec[0] = transformed_X_channel.dims()[0];
new_input_shape_vec[1] = transformed_X_channel.dims()[1];
for (size_t i = 0; i < data_dim; ++i) {
padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
new_input_shape_vec[i + 2] =
transformed_X_channel.dims()[i + 2] + padding_diff[i];
input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
}
framework::DDim new_input_shape(
framework::make_ddim(new_input_shape_vec));
transformed_X.Resize(new_input_shape);
transformed_ddX.Resize(new_input_shape);
transformed_dX.Resize(new_input_shape);
transformed_X =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
if (ddX) {
transformed_ddX =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
}
if (dX) {
transformed_dX =
ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
new_input_shape, dev_ctx);
}
// pad for input
const int rank = X->dims().size();
T pad_value(0.0);
switch (rank) {
case 4: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
if (ddX) {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
ctx, input_pad, transformed_ddX_channel, pad_value,
&transformed_ddX);
}
} break;
case 5: {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
if (ddX) {
math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
ctx, input_pad, transformed_ddX_channel, pad_value,
&transformed_ddX);
}
} break;
default:
PADDLE_THROW("ConvOp only support tensors with 4 or 5 dimensions.");
}
} else {
transformed_X.ShareDataWith(transformed_X_channel);
if (ddX) {
transformed_ddX.ShareDataWith(transformed_ddX_channel);
}
if (dX) {
transformed_dX.ShareDataWith(transformed_dX_channel);
}
if (paddings.size() == data_dim) {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[i];
}
} else {
for (size_t i = 0; i < data_dim; ++i) {
padding_common[i] = paddings[2 * i];
}
}
}
const T* x = transformed_X.data<T>();
int iwo_group = groups;
int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
iwo_group = 1;
c_group = groups;
groups = 1;
#endif
auto dtype = platform::CudnnDataType<T>::type;
auto handle = dev_ctx.cudnn_handle();
ConvArgs args1{&transformed_ddX,
W,
&transformed_ddO_channel,
strides,
padding_common,
dilations,
dtype};
ConvArgs args2{
&transformed_X, ddW, &transformed_ddO_channel, strides, padding_common,
dilations, dtype};
ConvArgs args3{&transformed_ddX,
dW,
&transformed_dO_channel,
strides,
padding_common,
dilations,
dtype};
ConvArgs args4{
&transformed_dX, ddW, &transformed_dO_channel, strides, padding_common,
dilations, dtype};
cudnnConvolutionFwdAlgo_t fwd_algo1 =
static_cast<cudnnConvolutionFwdAlgo_t>(0);
cudnnConvolutionFwdAlgo_t fwd_algo2 =
static_cast<cudnnConvolutionFwdAlgo_t>(0);
cudnnConvolutionBwdDataAlgo_t data_algo =
static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
cudnnConvolutionBwdFilterAlgo_t filter_algo =
static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);
// ddo = conv(ddI, W) + conv(I, ddW)
size_t workspace_size = 0;
T* transformed_ddy_channel = nullptr;
if (ddO) {
ddy = ddO->data<T>();
transformed_ddy_channel = transformed_ddO_channel.data<T>();
if (ddX) {
args1.handle = handle;
args1.idesc.set(transformed_ddX, iwo_group);
args1.wdesc.set(*W, layout, iwo_group);
args1.odesc.set(transformed_ddO_channel, iwo_group);
args1.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
}
if (ddW) {
ddw = ddW->data<T>();
args2.handle = handle;
args2.idesc.set(transformed_X, iwo_group);
args2.wdesc.set(*ddW, layout, iwo_group);
args2.odesc.set(transformed_ddO_channel, iwo_group);
args2.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
workspace_size = std::max(workspace_size,
search2::GetWorkspaceSize(args2, fwd_algo2));
}
}
if (dW && ddX) {
dw = dW->data<T>();
args3.handle = handle;
args3.idesc.set(transformed_ddX, iwo_group);
args3.wdesc.set(*dW, layout, iwo_group);
args3.odesc.set(transformed_dO_channel, iwo_group);
args3.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
filter_algo =
search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
workspace_size = std::max(workspace_size,
search3::GetWorkspaceSize(args3, filter_algo));
}
if (ddW && dX) {
transformed_dx = transformed_dX.data<T>();
args4.handle = handle;
args4.idesc.set(transformed_dX, iwo_group);
args4.wdesc.set(*ddW, layout, iwo_group);
args4.odesc.set(transformed_dO_channel, iwo_group);
args4.cdesc.set(dtype, padding_common, strides, dilations, c_group);
using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
data_algo =
search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
workspace_size =
std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
}
int i_n, i_c, i_d, i_h, i_w;
GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
&i_w);
int o_n, o_c, o_d, o_h, o_w;
GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
&o_h, &o_w);
int group_offset_in = i_c / groups * i_h * i_w * i_d;
int group_offset_out = o_c / groups * o_h * o_w * o_d;
int group_offset_filter = W->numel() / groups;
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
auto wkspace_handle = dev_ctx.cudnn_workspace_handle();
if (ddO) {
if (ddX) {
ddx = transformed_ddX.data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionForward(
handle, &alpha, args1.idesc.desc(),
ddx + i * group_offset_in, args1.wdesc.desc(),
w + i * group_offset_filter, args1.cdesc.desc(),
fwd_algo1, workspace_ptr, workspace_size, &beta,
args1.odesc.desc(),
transformed_ddy_channel + i * group_offset_out));
},
workspace_size);
}
}
if (ddW) {
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionForward(
handle, &alpha, args2.idesc.desc(),
x + i * group_offset_in, args2.wdesc.desc(),
ddw + i * group_offset_filter, args2.cdesc.desc(),
fwd_algo2, workspace_ptr, workspace_size, &alpha,
args2.odesc.desc(),
transformed_ddy_channel + i * group_offset_out));
},
workspace_size);
}
}
if (channel_last) {
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_ddO_channel, ddO);
}
}
T* transformed_dy_channel = transformed_dO_channel.data<T>();
if (dW && ddX) {
ddx = transformed_ddX.data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardFilter(
handle, &alpha, args3.idesc.desc(),
ddx + i * group_offset_in, args3.odesc.desc(),
transformed_dy_channel + i * group_offset_out,
args3.cdesc.desc(), filter_algo, workspace_ptr,
workspace_size, &beta, args3.wdesc.desc(),
dw + i * group_offset_filter));
},
workspace_size);
}
}
if (dX && ddW) {
ddw = ddW->data<T>();
for (int i = 0; i < groups; i++) {
wkspace_handle.RunFunc(
[&](void* workspace_ptr) {
PADDLE_ENFORCE_CUDA_SUCCESS(
platform::dynload::cudnnConvolutionBackwardData(
handle, &alpha, args4.wdesc.desc(),
ddw + i * group_offset_filter, args4.odesc.desc(),
transformed_dy_channel + i * group_offset_out,
args4.cdesc.desc(), data_algo, workspace_ptr,
workspace_size, &beta, args4.idesc.desc(),
transformed_dx + i * group_offset_in));
},
workspace_size);
}
if (!is_sys_pad) {
// reverse padded input
std::vector<int> starts(X->dims().size(), 0);
std::vector<int> axes(X->dims().size(), 0);
for (size_t i = 0; i < X->dims().size(); ++i) {
starts[i] = input_pad[2 * i];
axes[i] = i;
}
if (X->dims().size() == 4) {
RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
} else {
RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
}
}
if (channel_last) {
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
ctx, &transformed_dX_channel, dX);
}
}
}
};
} // namespace operators
} // namespace paddle
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvOpKernel<float>,
paddle::operators::CUDNNConvOpKernel<double>,
paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvGradOpKernel<float>,
paddle::operators::CUDNNConvGradOpKernel<double>,
paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
conv2d_grad_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvOpKernel<float>,
paddle::operators::CUDNNConvOpKernel<double>,
paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvGradOpKernel<float>,
paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
conv3d_grad_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);