You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
6.1 KiB
151 lines
6.1 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/flip_op.h"
|
|
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::OpKernelType;
|
|
using framework::Tensor;
|
|
|
|
class FlipOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::NotFound("Input(X) of FlipOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound(
|
|
"Output(Out) of FlipOp should not be null."));
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto flip_dims = ctx->Attrs().Get<std::vector<int>>("dims");
|
|
size_t flip_dims_size = flip_dims.size();
|
|
|
|
// check if dims axis within range
|
|
auto min_max_d = std::minmax_element(flip_dims.begin(), flip_dims.end());
|
|
PADDLE_ENFORCE_LT(*min_max_d.first, x_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"min(dims) should be less than the input tensor X's "
|
|
"dimensions of FlipOp. But received min(dims) = %d, "
|
|
"X's dimensions = %d, X's shape = [%s]",
|
|
*min_max_d.first, x_dims.size(), x_dims));
|
|
PADDLE_ENFORCE_GE(
|
|
*min_max_d.first, x_dims.size() * -1,
|
|
platform::errors::InvalidArgument(
|
|
"min(dims) should be greater than or equal to the input tensor X's "
|
|
"dimensions of FlipOp times -1. But received min(dims) = %d, X's "
|
|
"dimensions = %d, X's shape = [%s]",
|
|
*min_max_d.first, x_dims.size() * -1, x_dims));
|
|
PADDLE_ENFORCE_LT(*min_max_d.second, x_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"max(dims) should be less than the input tensor X's "
|
|
"dimensions of FlipOp. But received max(dims) = %d, "
|
|
"X's dimensions = %d, X's shape = [%s]",
|
|
*min_max_d.second, x_dims.size(), x_dims));
|
|
PADDLE_ENFORCE_GE(
|
|
*min_max_d.second, x_dims.size() * -1,
|
|
platform::errors::InvalidArgument(
|
|
"max(dims) should be greater than or equal to the input tensor X's "
|
|
"dimensions of FlipOp times -1. But received max(dims) = %d, X's "
|
|
"dimensions = %d, X's shape = [%s]",
|
|
*min_max_d.second, x_dims.size() * -1, x_dims));
|
|
|
|
// check duplicates in dims
|
|
flip_dims.erase(std::unique(flip_dims.begin(), flip_dims.end()),
|
|
flip_dims.end());
|
|
PADDLE_ENFORCE_EQ(flip_dims.size(), flip_dims_size,
|
|
platform::errors::InvalidArgument(
|
|
"dims has duplicates, original flip dims size=%d, "
|
|
"but unique flip dims size=%d.)",
|
|
flip_dims_size, flip_dims.size()));
|
|
|
|
VLOG(3) << "flip operator x.shape=" << x_dims;
|
|
|
|
std::vector<int64_t> output_dims(x_dims.size());
|
|
for (int i = 0; i < x_dims.size(); ++i) {
|
|
output_dims[i] = x_dims[i];
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const {
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
int customized_type_value =
|
|
framework::OpKernelType::kDefaultCustomizedTypeValue;
|
|
auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
|
|
library, customized_type_value);
|
|
}
|
|
};
|
|
|
|
class FlipOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor), The input tensor of flip op.");
|
|
AddOutput("Out", "(Tensor), The output tensor of flip op.");
|
|
AddAttr<std::vector<int>>("dims", "The axes to flip on.");
|
|
AddComment(R"DOC(
|
|
Flip Operator.
|
|
Reverse the order of a n-D tensor along given axis in dims.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FlipOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
|
|
const override {
|
|
static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
|
|
return m;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class FlipOpGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> retv) const override {
|
|
retv->SetType("flip");
|
|
retv->SetInput("X", this->OutputGrad("Out"));
|
|
retv->SetOutput("Out", this->InputGrad("X"));
|
|
retv->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(flip, ops::FlipOp, ops::FlipOpMaker, ops::FlipOpInferVarType,
|
|
ops::FlipOpGradMaker<paddle::framework::OpDesc>,
|
|
ops::FlipOpGradMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
flip, ops::FlipKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::FlipKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::FlipKernel<paddle::platform::CPUDeviceContext, int32_t>,
|
|
ops::FlipKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::FlipKernel<paddle::platform::CPUDeviceContext, bool>);
|