You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
6.2 KiB
164 lines
6.2 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fsp_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class FSPOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fsp_op");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "fsp_op");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "fsp_op");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims.size(), 4UL,
|
|
platform::errors::InvalidArgument(
|
|
"The Input(X) must have shape [batch_size, channel, height, width]."
|
|
"Now the dimension of 'X' is %d.",
|
|
x_dims.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
y_dims.size(), 4UL,
|
|
platform::errors::InvalidArgument(
|
|
"The Input(Y) must have shape [batch_size, channel, height, width]."
|
|
"Now the dimension of 'Y' is %d.",
|
|
y_dims.size()));
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims[2], y_dims[2],
|
|
platform::errors::InvalidArgument(
|
|
"The Input(X)(%d) and Input(Y)(%d) should have the same height.",
|
|
x_dims[2], y_dims[2]));
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims[3], y_dims[3],
|
|
platform::errors::InvalidArgument(
|
|
"The Input(X)(%d) and Input(Y)(%d) should have the same width.",
|
|
x_dims[3], y_dims[3]));
|
|
|
|
ctx->SetOutputDim("Out", {x_dims[0], x_dims[1], y_dims[1]});
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
|
framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context(),
|
|
layout_, library_);
|
|
}
|
|
};
|
|
|
|
class FSPOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(Tensor) The input of FSP op with shape [batch_size, x_channel, "
|
|
"height, width]");
|
|
AddInput("Y",
|
|
"(Tensor) The input of FSP op with shape"
|
|
"[batch_size, y_channel, height, width]."
|
|
"The y_channel can be different with the x_channel of Input(X)"
|
|
" while the other dimensions must be the same with Input(X)'s.");
|
|
AddOutput(
|
|
"Out",
|
|
"(Tensor) The output of FSP op with shape "
|
|
"[batch_size, x_channel, y_channel]. The x_channel is the channel "
|
|
"of Input(X) and the y_channel is the channel of Input(Y).");
|
|
AddComment(R"DOC(
|
|
This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
|
|
Given feature map x with shape [x_channel, h, w] and feature map y with shape
|
|
[y_channel, h, w], we can get the fsp matrix of x and y in two steps:
|
|
|
|
step 1: reshape x into matrix with shape [x_channel, h * w] and reshape and
|
|
transpose y into matrix with shape [h * w, y_channel]
|
|
step 2: multiply x and y to get fsp matrix with shape [x_channel, y_channel]
|
|
|
|
The output is a batch of fsp matrices.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class FSPOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, x_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, y_dims);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class FSPGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("fsp_grad");
|
|
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(fsp, ops::FSPOp, ops::FSPOpMaker,
|
|
ops::FSPGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::FSPGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(fsp_grad, ops::FSPOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fsp, ops::FSPOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::FSPOpKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
fsp_grad, ops::FSPGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::FSPGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|