You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/maxout_op.cc

128 lines
5.0 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/maxout_op.h"
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"A 4-D Tensor with data type of float32 or float64. "
"The data format is NCHW or NHWC. Where N is "
"batch size, C is the number of channels, "
"H and W is the height and width of "
"feature. ");
AddOutput("Out",
"A 4-D Tensor with same data type and data format "
"with input Tensor. ");
AddAttr<int>(
"groups",
"Specifies how many groups the input tensor will be split into "
"at the channel dimension. And the number of output channel is "
"the number of channels divided by groups. ");
AddAttr<int>(
"axis",
"Specifies the index of channel dimension where maxout will "
"be performed. It should be 1 when data format is NCHW, -1 or 3 "
"when data format is NHWC. "
"Default: 1. ")
.SetDefault(1);
AddComment(R"DOC(
MaxOut Operator.
Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
Then $Co = Ci / groups$ and the operator formula is as follows:
$$ y_{si+j} = \max_{k} x_{gsi + sk + j} $$
$$ g = groups $$
$$ s = \\frac{input.size}{num\\_channels} $$
$$ 0 \\le i < \\frac{num\\_channels}{groups} $$
$$ 0 \\le j < s $$
$$ 0 \\le k < groups $$
Please refer to Paper:
- Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
- Multi-digit Number Recognition from Street View \
Imagery using Deep Convolutional Neural Networks: \
https://arxiv.org/pdf/1312.6082v4.pdf
)DOC");
}
};
class MaxOutOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "maxout");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "maxout");
auto in_x_dims = ctx->GetInputDim("X");
int groups = ctx->Attrs().Get<int>("groups");
int axis = ctx->Attrs().Get<int>("axis");
// check groups > 1
PADDLE_ENFORCE_GT(groups, 1, platform::errors::InvalidArgument(
"Attr(groups) of Op(maxout) should be "
"larger than 1. But received %d.",
groups));
PADDLE_ENFORCE_EQ(
in_x_dims[axis] % groups, 0,
platform::errors::InvalidArgument(
"The number of input channels for Op(maxout) "
"should be divisible by Attr(groups). But received: the "
"input's channels is [%d], the shape of input is [%s], "
"the Attr(groups) is [%d], the Attr(axis) is [%d]. The "
"error may come from wrong Attr(groups) or Attr(axis) setting.",
in_x_dims[axis], in_x_dims, groups, axis));
std::vector<int64_t> output_shape(
{in_x_dims[0], in_x_dims[1], in_x_dims[2], in_x_dims[3]});
output_shape[axis] = in_x_dims[axis] / groups;
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
};
class MaxOutOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "maxout_grad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "maxout_grad");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(
maxout, ops::MaxOutOp, ops::MaxOutOpMaker,
paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
REGISTER_OPERATOR(maxout_grad, ops::MaxOutOpGrad);
REGISTER_OP_CPU_KERNEL(
maxout, ops::MaxOutKernel<paddle::platform::CPUDeviceContext, float>,
ops::MaxOutKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
maxout_grad,
ops::MaxOutGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MaxOutGradKernel<paddle::platform::CPUDeviceContext, double>);