You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.4 KiB
116 lines
4.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/operators/math/pooling.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T1, typename T2>
|
|
class MaxPoolWithIndexKernel : public framework::OpKernel<T1> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* in_x = context.Input<Tensor>("X");
|
|
Tensor* out = context.Output<Tensor>("Out");
|
|
Tensor* mask = context.Output<Tensor>("Mask");
|
|
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
if (context.Attr<bool>("global_pooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
}
|
|
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
paddle::operators::math::MaxPool2dWithIndexFunctor<DeviceContext, T1,
|
|
T2>
|
|
pool2d_forward;
|
|
pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, adaptive, out,
|
|
mask);
|
|
} break;
|
|
case 3: {
|
|
paddle::operators::math::MaxPool3dWithIndexFunctor<DeviceContext, T1,
|
|
T2>
|
|
pool3d_forward;
|
|
pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, adaptive, out,
|
|
mask);
|
|
} break;
|
|
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T1, typename T2>
|
|
class MaxPoolWithIndexGradKernel : public framework::OpKernel<T1> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* mask = context.Input<Tensor>("Mask");
|
|
const Tensor* out_grad =
|
|
context.Input<Tensor>(framework::GradVarName("Out"));
|
|
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
|
bool adaptive = context.Attr<bool>("adaptive");
|
|
if (context.Attr<bool>("global_pooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x_grad->dims()[i + 2]);
|
|
}
|
|
}
|
|
|
|
if (in_x_grad) {
|
|
in_x_grad->mutable_data<T1>(context.GetPlace());
|
|
auto& device_ctx = context.template device_context<DeviceContext>();
|
|
math::set_constant(device_ctx, in_x_grad, 0);
|
|
|
|
switch (ksize.size()) {
|
|
case 2: {
|
|
paddle::operators::math::MaxPool2dWithIndexGradFunctor<DeviceContext,
|
|
T1, T2>
|
|
pool2d_backward;
|
|
pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides,
|
|
paddings, adaptive, in_x_grad);
|
|
} break;
|
|
case 3: {
|
|
paddle::operators::math::MaxPool3dWithIndexGradFunctor<DeviceContext,
|
|
T1, T2>
|
|
pool3d_backward;
|
|
pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides,
|
|
paddings, adaptive, in_x_grad);
|
|
} break;
|
|
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|