You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
466 lines
16 KiB
466 lines
16 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using Tensor = framework::Tensor;
|
|
|
|
inline std::vector<int> get_new_data_from_tensorlist(
|
|
const std::vector<const Tensor*>& list_new_data_tensor) {
|
|
// get tensor from
|
|
std::vector<int> vec_new_data;
|
|
for (size_t i = 0; i < list_new_data_tensor.size(); ++i) {
|
|
auto tensor = list_new_data_tensor[i];
|
|
PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
|
|
"shape of dim tensor should be [1]");
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
vec_new_data.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
|
|
} else {
|
|
vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
|
|
}
|
|
}
|
|
return vec_new_data;
|
|
}
|
|
inline std::vector<int> get_new_data_from_tensor(
|
|
const Tensor* new_data_tensor) {
|
|
std::vector<int> vec_new_data;
|
|
auto* new_data = new_data_tensor->data<int>();
|
|
framework::Tensor cpu_starts_tensor;
|
|
if (platform::is_gpu_place(new_data_tensor->place())) {
|
|
TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
|
|
new_data = cpu_starts_tensor.data<int>();
|
|
}
|
|
vec_new_data =
|
|
std::vector<int>(new_data, new_data + new_data_tensor->numel());
|
|
return vec_new_data;
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SliceKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const framework::Variable* input_var = ctx.InputVar("Input");
|
|
bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
|
|
int rank = is_tensor_array
|
|
? 1
|
|
: ctx.Input<framework::Tensor>("Input")->dims().size();
|
|
|
|
switch (rank) {
|
|
case 1:
|
|
SliceCompute<1>(ctx);
|
|
break;
|
|
case 2:
|
|
SliceCompute<2>(ctx);
|
|
break;
|
|
case 3:
|
|
SliceCompute<3>(ctx);
|
|
break;
|
|
case 4:
|
|
SliceCompute<4>(ctx);
|
|
break;
|
|
case 5:
|
|
SliceCompute<5>(ctx);
|
|
break;
|
|
case 6:
|
|
SliceCompute<6>(ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <size_t D>
|
|
void SliceCompute(const framework::ExecutionContext& context) const {
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
const framework::Variable* input_var = context.InputVar("Input");
|
|
framework::Variable* out_var = context.OutputVar("Out");
|
|
bool input_is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
|
|
bool out_is_tensor_array = out_var->IsType<framework::LoDTensorArray>();
|
|
|
|
auto axes = context.Attr<std::vector<int>>("axes");
|
|
auto starts = context.Attr<std::vector<int>>("starts");
|
|
|
|
auto ends = context.Attr<std::vector<int>>("ends");
|
|
auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
|
|
auto infer_flags = context.Attr<std::vector<int>>("infer_flags");
|
|
auto list_new_ends_tensor =
|
|
context.MultiInput<framework::Tensor>("EndsTensorList");
|
|
auto list_new_starts_tensor =
|
|
context.MultiInput<framework::Tensor>("StartsTensorList");
|
|
|
|
bool need_infer = false;
|
|
if (context.HasInput("StartsTensor") || context.HasInput("EndsTensor")) {
|
|
need_infer = true;
|
|
}
|
|
if (list_new_starts_tensor.size() > 0 || list_new_ends_tensor.size() > 0) {
|
|
need_infer = true;
|
|
}
|
|
if (need_infer) {
|
|
if (context.HasInput("StartsTensor")) {
|
|
auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
|
|
starts = get_new_data_from_tensor(starts_tensor);
|
|
} else if (list_new_starts_tensor.size() > 0) {
|
|
starts = get_new_data_from_tensorlist(list_new_starts_tensor);
|
|
}
|
|
if (context.HasInput("EndsTensor")) {
|
|
auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
|
|
ends = get_new_data_from_tensor(ends_tensor);
|
|
} else if (list_new_ends_tensor.size() > 0) {
|
|
ends = get_new_data_from_tensorlist(list_new_ends_tensor);
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
starts.size(), axes.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of starts must be equal to the size of axes."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ends.size(), axes.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The size of ends must be equal to the size of axes."));
|
|
if (input_is_tensor_array) {
|
|
auto in_array = context.Input<framework::LoDTensorArray>("Input");
|
|
// If the input is LoDTensorArray, the rank of input is 1.
|
|
int in_size = in_array->size();
|
|
int start = starts[0] < 0 ? (starts[0] + in_size) : starts[0];
|
|
int end = ends[0] < 0 ? (ends[0] + in_size) : ends[0];
|
|
start = std::max(start, 0);
|
|
end = std::max(end, 0);
|
|
end = std::min(end, in_size);
|
|
|
|
PADDLE_ENFORCE_GT(end, start,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(ends) should be greater than attr(starts) in "
|
|
"slice op. But received ends = %d, starts = %d.",
|
|
end, start));
|
|
int out_size = end - start;
|
|
|
|
if (out_is_tensor_array) {
|
|
auto out_array = context.Output<framework::LoDTensorArray>("Out");
|
|
out_array->resize(out_size);
|
|
|
|
for (int i = 0; i < out_size; ++i) {
|
|
auto* out_tensor = &out_array->at(i);
|
|
auto in_tensor = in_array->at(i + start);
|
|
out_tensor->set_lod(in_tensor.lod());
|
|
if (in_tensor.memory_size() > 0) {
|
|
TensorCopy(in_tensor, context.GetPlace(), out_tensor);
|
|
} else {
|
|
VLOG(10)
|
|
<< "WARNING: The input tensor 'x_tensor' holds no memory, so "
|
|
"nothing has been written to output array["
|
|
<< i << "].";
|
|
}
|
|
}
|
|
} else {
|
|
auto out = context.Output<framework::Tensor>("Out");
|
|
auto in_tensor = in_array->at(start);
|
|
TensorCopy(in_tensor, context.GetPlace(), out);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
auto in = context.Input<framework::Tensor>("Input");
|
|
auto out = context.Output<framework::Tensor>("Out");
|
|
|
|
auto out_dims = out->dims();
|
|
auto in_dims = in->dims();
|
|
if (need_infer) {
|
|
out_dims = in_dims;
|
|
int dim_value, start, end;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
dim_value = out_dims[axes[i]];
|
|
if (dim_value > 0) {
|
|
// when end = start+1 and start == -1
|
|
if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
|
|
auto ret =
|
|
std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
|
|
if (ret != decrease_axis.end()) {
|
|
ends[i] = 10000000;
|
|
}
|
|
}
|
|
|
|
start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
|
|
end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
|
|
start = std::max(start, 0);
|
|
end = std::max(end, 0);
|
|
end = std::min(end, dim_value);
|
|
PADDLE_ENFORCE_GT(end, start, "end should greater than start");
|
|
out_dims[axes[i]] = end - start;
|
|
}
|
|
}
|
|
out->Resize(out_dims);
|
|
// generate new shape
|
|
if (decrease_axis.size() > 0) {
|
|
std::vector<int> new_out_shape;
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(out_dims[decrease_axis[i]], 1,
|
|
"decrease dim should be 1");
|
|
out_dims[decrease_axis[i]] = 0;
|
|
}
|
|
|
|
for (int i = 0; i < out_dims.size(); ++i) {
|
|
if (out_dims[i] != 0) {
|
|
new_out_shape.push_back(out_dims[i]);
|
|
}
|
|
}
|
|
if (new_out_shape.size() == 0) {
|
|
new_out_shape.push_back(1);
|
|
}
|
|
|
|
out_dims = framework::make_ddim(new_out_shape);
|
|
}
|
|
}
|
|
|
|
// resize out_dims
|
|
if (decrease_axis.size() > 0) {
|
|
if (decrease_axis.size() == (size_t)in_dims.size()) {
|
|
std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
|
|
out->Resize(framework::make_ddim(vec_origin_out_shape));
|
|
} else {
|
|
std::vector<int> vec_origin_out_shape(
|
|
out_dims.size() + decrease_axis.size(), -1);
|
|
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
vec_origin_out_shape[decrease_axis[i]] = 1;
|
|
}
|
|
|
|
int index = 0;
|
|
for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
|
|
if (vec_origin_out_shape[i] == -1) {
|
|
vec_origin_out_shape[i] = out_dims[index];
|
|
++index;
|
|
}
|
|
}
|
|
|
|
out->Resize(framework::make_ddim(vec_origin_out_shape));
|
|
}
|
|
}
|
|
|
|
out->mutable_data<T>(context.GetPlace());
|
|
|
|
auto new_out_dims = out->dims();
|
|
auto offsets = Eigen::array<int, D>();
|
|
auto extents = Eigen::array<int, D>();
|
|
for (size_t i = 0; i < D; ++i) {
|
|
offsets[i] = 0;
|
|
extents[i] = new_out_dims[i];
|
|
}
|
|
int start;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
start = starts[i];
|
|
if (start < 0) {
|
|
start = (start + in_dims[axes[i]]);
|
|
}
|
|
start = std::max(start, 0);
|
|
offsets[axes[i]] = start;
|
|
}
|
|
auto in_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*in);
|
|
auto out_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*out, new_out_dims);
|
|
out_t.device(place) = in_t.slice(offsets, extents);
|
|
|
|
out->Resize(out_dims);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SliceGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
const framework::Variable* input_var = ctx.InputVar("Input");
|
|
bool is_tensor_array = input_var->IsType<framework::LoDTensorArray>();
|
|
size_t rank = is_tensor_array
|
|
? 1
|
|
: ctx.Input<framework::Tensor>("Input")->dims().size();
|
|
|
|
switch (rank) {
|
|
case 1:
|
|
SliceCompute<1>(ctx);
|
|
break;
|
|
case 2:
|
|
SliceCompute<2>(ctx);
|
|
break;
|
|
case 3:
|
|
SliceCompute<3>(ctx);
|
|
break;
|
|
case 4:
|
|
SliceCompute<4>(ctx);
|
|
break;
|
|
case 5:
|
|
SliceCompute<5>(ctx);
|
|
break;
|
|
case 6:
|
|
SliceCompute<6>(ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <size_t D>
|
|
void SliceCompute(const framework::ExecutionContext& context) const {
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
auto axes = context.Attr<std::vector<int>>("axes");
|
|
auto starts = context.Attr<std::vector<int>>("starts");
|
|
auto ends = context.Attr<std::vector<int>>("ends");
|
|
auto list_new_ends_tensor =
|
|
context.MultiInput<framework::Tensor>("EndsTensorList");
|
|
auto list_new_starts_tensor =
|
|
context.MultiInput<framework::Tensor>("StartsTensorList");
|
|
|
|
if (list_new_starts_tensor.size() > 0) {
|
|
starts = get_new_data_from_tensorlist(list_new_starts_tensor);
|
|
} else if (context.HasInput("StartsTensor")) {
|
|
auto* starts_tensor = context.Input<framework::Tensor>("StartsTensor");
|
|
starts = get_new_data_from_tensor(starts_tensor);
|
|
}
|
|
|
|
if (list_new_ends_tensor.size() > 0) {
|
|
ends = get_new_data_from_tensorlist(list_new_ends_tensor);
|
|
} else if (context.HasInput("EndsTensor")) {
|
|
auto* ends_tensor = context.Input<framework::Tensor>("EndsTensor");
|
|
ends = get_new_data_from_tensor(ends_tensor);
|
|
}
|
|
framework::Variable* d_input_var =
|
|
context.OutputVar(framework::GradVarName("Input"));
|
|
const framework::Variable* d_out_var =
|
|
context.InputVar(framework::GradVarName("Out"));
|
|
bool d_input_is_tensor_array =
|
|
d_input_var->IsType<framework::LoDTensorArray>();
|
|
bool d_out_is_tensor_array = d_out_var->IsType<framework::LoDTensorArray>();
|
|
|
|
if (d_input_is_tensor_array) {
|
|
auto* input_array = context.Input<framework::LoDTensorArray>("Input");
|
|
auto* d_input_array = context.Output<framework::LoDTensorArray>(
|
|
framework::GradVarName("Input"));
|
|
|
|
int d_in_size = input_array->size();
|
|
d_input_array->resize(d_in_size);
|
|
// If the input is LoDTensorArray, the rank of input is 1.
|
|
// So only use the 0th element of starts.
|
|
int start = starts[0] < 0 ? (starts[0] + d_in_size) : starts[0];
|
|
start = std::max(start, 0);
|
|
// set zero
|
|
platform::DeviceContextPool& pool =
|
|
platform::DeviceContextPool::Instance();
|
|
auto& dev_ctx = *pool.Get(context.GetPlace());
|
|
T value = 0.0;
|
|
math::SetConstant<DeviceContext, T> functor;
|
|
for (int i = 0; i < d_in_size; ++i) {
|
|
auto dim = input_array->at(i).dims();
|
|
d_input_array->at(i).Resize(dim);
|
|
d_input_array->at(i).mutable_data<T>(context.GetPlace());
|
|
functor(reinterpret_cast<const DeviceContext&>(dev_ctx),
|
|
&d_input_array->at(i), static_cast<T>(value));
|
|
}
|
|
|
|
if (d_out_is_tensor_array) {
|
|
auto* d_out_array = context.Input<framework::LoDTensorArray>(
|
|
framework::GradVarName("Out"));
|
|
int d_out_size = d_out_array->size();
|
|
for (int i = 0; i < d_out_size; ++i) {
|
|
TensorCopy(d_out_array->at(i), context.GetPlace(),
|
|
&(d_input_array->at(start + i)));
|
|
}
|
|
|
|
} else {
|
|
auto* d_out =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
TensorCopy(*d_out, context.GetPlace(), &(d_input_array->at(start)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto* d_out =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto* d_input =
|
|
context.Output<framework::Tensor>(framework::GradVarName("Input"));
|
|
|
|
d_input->mutable_data<T>(context.GetPlace());
|
|
|
|
auto out_dims = d_out->dims();
|
|
auto in_dims = d_input->dims();
|
|
|
|
auto decrease_axis = context.Attr<std::vector<int>>("decrease_axis");
|
|
if (decrease_axis.size() > 0) {
|
|
if (decrease_axis.size() == (size_t)in_dims.size()) {
|
|
// all dims decrease
|
|
std::vector<int> vec_origin_out_shape(decrease_axis.size(), 1);
|
|
out_dims = framework::make_ddim(vec_origin_out_shape);
|
|
} else {
|
|
std::vector<int> vec_origin_out_shape(
|
|
out_dims.size() + decrease_axis.size(), -1);
|
|
|
|
for (size_t i = 0; i < decrease_axis.size(); ++i) {
|
|
vec_origin_out_shape[decrease_axis[i]] = 1;
|
|
}
|
|
|
|
int index = 0;
|
|
for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
|
|
if (vec_origin_out_shape[i] == -1) {
|
|
vec_origin_out_shape[i] = out_dims[index];
|
|
++index;
|
|
}
|
|
}
|
|
|
|
out_dims = framework::make_ddim(vec_origin_out_shape);
|
|
}
|
|
}
|
|
|
|
auto offsets = Eigen::array<int, D>();
|
|
auto extents = Eigen::array<int, D>();
|
|
for (size_t i = 0; i < D; ++i) {
|
|
offsets[i] = 0;
|
|
extents[i] = out_dims[i];
|
|
}
|
|
int start;
|
|
for (size_t i = 0; i < axes.size(); ++i) {
|
|
start = starts[i];
|
|
if (start < 0) {
|
|
start = (start + in_dims[axes[i]]);
|
|
}
|
|
start = std::max(start, 0);
|
|
offsets[axes[i]] = start;
|
|
}
|
|
Eigen::array<std::pair<int, int>, D> paddings;
|
|
for (size_t i = 0; i < paddings.size(); ++i) {
|
|
paddings[i].first = offsets[i];
|
|
paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
|
|
}
|
|
auto d_in_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*d_input);
|
|
auto d_out_t =
|
|
framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
|
|
*d_out, out_dims);
|
|
d_in_t.device(place) = d_out_t.pad(paddings, 0);
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|