You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/trace_op.cc

173 lines
6.5 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/trace_op.h"
namespace paddle {
namespace operators {
class TraceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Input"), true,
platform::errors::NotFound("Input of TraceOp is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output of TraceOp is not found."));
int dim1 = ctx->Attrs().Get<int>("dim1");
int dim2 = ctx->Attrs().Get<int>("dim2");
auto x_dims = ctx->GetInputDim("Input");
int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;
PADDLE_ENFORCE_GE(
x_dims.size(), 2,
platform::errors::OutOfRange(
"trace requires an tensor of at least two dimensions"));
PADDLE_ENFORCE_LT(
dim1_, x_dims.size(),
platform::errors::OutOfRange(
"Attr(dim1) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size()), (x_dims.size() - 1), dim1));
PADDLE_ENFORCE_LT(
dim2_, x_dims.size(),
platform::errors::OutOfRange(
"Attr(dim2) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size()), (x_dims.size() - 1), dim2));
PADDLE_ENFORCE_NE(dim1_, dim2_,
platform::errors::InvalidArgument(
"The dimensions should not be identical "
"%ld vs %ld.",
dim1, dim2));
auto sizes = vectorize(x_dims);
if (x_dims.size() == 2) {
sizes.clear();
sizes.push_back(1);
} else {
sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
}
ctx->SetOutputDim("Out", framework::make_ddim(sizes));
}
};
class TraceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input",
"(Tensor) The input tensor, from which the diagonals are taken.");
AddOutput("Out", "(Tensor) the sum along diagonals of the input tensor");
AddAttr<int>(
"offset",
R"DOC((int, default 0), offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0.
)DOC")
.SetDefault(0);
AddAttr<int>(
"dim1",
R"DOC((int, default 0), the first dim of the 2-D planes from which the diagonals should be taken.
Can be both positive and negative. Default: 0.
)DOC")
.SetDefault(-2);
AddAttr<int>(
"dim2",
R"DOC((int, default 1), the second dim of the 2-D planes from which the diagonals should be taken.
Can be both positive and negative. Default: 1.
)DOC")
.SetDefault(-1);
AddComment(R"DOC(
Trace Operator.
Return the sum along diagonals of the input tensor.
The behavior of this operator is similar to how `numpy.trace` works.
If Input is 2-D, returns the sum of diagonal.
If Input has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
the 2-D planes specified by dim1 and dim2.
)DOC");
}
};
class TraceOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Input"), true,
platform::errors::NotFound("Input(Input) of TraceOp is not found."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Input")), true,
platform::errors::NotFound(
"Output(Input@GRAD) of TraceGradOp is not found."));
ctx->SetOutputDim(framework::GradVarName("Input"),
ctx->GetInputDim("Input"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class TraceGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("trace_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(TraceGradNoNeedBufferVarsInference,
"Input");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(trace, ops::TraceOp, ops::TraceOpMaker,
ops::TraceGradOpMaker<paddle::framework::OpDesc>,
ops::TraceGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(trace_grad, ops::TraceOpGrad,
ops::TraceGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
trace, ops::TraceKernel<paddle::platform::CPUDeviceContext, int>,
ops::TraceKernel<paddle::platform::CPUDeviceContext, float>,
ops::TraceKernel<paddle::platform::CPUDeviceContext, double>,
ops::TraceKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
trace_grad, ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int64_t>);