You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
6.5 KiB
173 lines
6.5 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/trace_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class TraceOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Input"), true,
|
|
platform::errors::NotFound("Input of TraceOp is not found."));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound("Output of TraceOp is not found."));
|
|
|
|
int dim1 = ctx->Attrs().Get<int>("dim1");
|
|
int dim2 = ctx->Attrs().Get<int>("dim2");
|
|
|
|
auto x_dims = ctx->GetInputDim("Input");
|
|
|
|
int dim1_ = dim1 < 0 ? x_dims.size() + dim1 : dim1;
|
|
int dim2_ = dim2 < 0 ? x_dims.size() + dim2 : dim2;
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
x_dims.size(), 2,
|
|
platform::errors::OutOfRange(
|
|
"trace requires an tensor of at least two dimensions"));
|
|
PADDLE_ENFORCE_LT(
|
|
dim1_, x_dims.size(),
|
|
platform::errors::OutOfRange(
|
|
"Attr(dim1) is out of range (expected to be in range of [%ld, "
|
|
"%ld], but got %ld).",
|
|
-(x_dims.size()), (x_dims.size() - 1), dim1));
|
|
PADDLE_ENFORCE_LT(
|
|
dim2_, x_dims.size(),
|
|
platform::errors::OutOfRange(
|
|
"Attr(dim2) is out of range (expected to be in range of [%ld, "
|
|
"%ld], but got %ld).",
|
|
-(x_dims.size()), (x_dims.size() - 1), dim2));
|
|
PADDLE_ENFORCE_NE(dim1_, dim2_,
|
|
platform::errors::InvalidArgument(
|
|
"The dimensions should not be identical "
|
|
"%ld vs %ld.",
|
|
dim1, dim2));
|
|
|
|
auto sizes = vectorize(x_dims);
|
|
if (x_dims.size() == 2) {
|
|
sizes.clear();
|
|
sizes.push_back(1);
|
|
} else {
|
|
sizes.erase(sizes.begin() + std::max(dim1_, dim2_));
|
|
sizes.erase(sizes.begin() + std::min(dim1_, dim2_));
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(sizes));
|
|
}
|
|
};
|
|
|
|
class TraceOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Input",
|
|
"(Tensor) The input tensor, from which the diagonals are taken.");
|
|
AddOutput("Out", "(Tensor) the sum along diagonals of the input tensor");
|
|
AddAttr<int>(
|
|
"offset",
|
|
R"DOC((int, default 0), offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0.
|
|
)DOC")
|
|
.SetDefault(0);
|
|
AddAttr<int>(
|
|
"dim1",
|
|
R"DOC((int, default 0), the first dim of the 2-D planes from which the diagonals should be taken.
|
|
Can be both positive and negative. Default: 0.
|
|
)DOC")
|
|
.SetDefault(-2);
|
|
AddAttr<int>(
|
|
"dim2",
|
|
R"DOC((int, default 1), the second dim of the 2-D planes from which the diagonals should be taken.
|
|
Can be both positive and negative. Default: 1.
|
|
)DOC")
|
|
.SetDefault(-1);
|
|
AddComment(R"DOC(
|
|
Trace Operator.
|
|
Return the sum along diagonals of the input tensor.
|
|
The behavior of this operator is similar to how `numpy.trace` works.
|
|
|
|
If Input is 2-D, returns the sum of diagonal.
|
|
If Input has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
|
|
the 2-D planes specified by dim1 and dim2.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
class TraceOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("Input"), true,
|
|
platform::errors::NotFound("Input(Input) of TraceOp is not found."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Input")), true,
|
|
platform::errors::NotFound(
|
|
"Output(Input@GRAD) of TraceGradOp is not found."));
|
|
ctx->SetOutputDim(framework::GradVarName("Input"),
|
|
ctx->GetInputDim("Input"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class TraceGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> grad_op) const override {
|
|
grad_op->SetType("trace_grad");
|
|
grad_op->SetInput("Input", this->Input("Input"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
grad_op->SetOutput(framework::GradVarName("Input"),
|
|
this->InputGrad("Input"));
|
|
grad_op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(TraceGradNoNeedBufferVarsInference,
|
|
"Input");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(trace, ops::TraceOp, ops::TraceOpMaker,
|
|
ops::TraceGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::TraceGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(trace_grad, ops::TraceOpGrad,
|
|
ops::TraceGradNoNeedBufferVarsInference);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
trace, ops::TraceKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::TraceKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TraceKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::TraceKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
trace_grad, ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::TraceGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|