You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
155 lines
6.8 KiB
155 lines
6.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/logical_op.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
template <typename OpComment>
|
|
class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
BinaryLogicalOpProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
OpComment comment;
|
|
AddInput("X",
|
|
string::Sprintf("(LoDTensor) Left hand operand of %s operator",
|
|
comment.type));
|
|
AddInput("Y",
|
|
string::Sprintf("(LoDTensor) Right hand operand of %s operator",
|
|
comment.type));
|
|
AddOutput("Out", string::Sprintf(
|
|
"(LoDTensor) n-dim bool tensor. Each element is %s",
|
|
comment.equation));
|
|
AddComment(string::Sprintf(R"DOC(%s Operator
|
|
|
|
It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean tensors.
|
|
Each element of Out is calculated by %s
|
|
)DOC",
|
|
comment.type, comment.equation));
|
|
}
|
|
};
|
|
|
|
template <typename OpComment>
|
|
class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
UnaryLogicalOpProtoMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
OpComment comment;
|
|
AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator",
|
|
comment.type));
|
|
AddOutput("Out", string::Sprintf(
|
|
"(LoDTensor) n-dim bool tensor. Each element is %s",
|
|
comment.equation));
|
|
AddComment(string::Sprintf(R"DOC(%s Operator
|
|
|
|
It operates element-wise on X, and returns the Out. X and Out are N-dim boolean tensors.
|
|
Each element of Out is calculated by %s
|
|
)DOC",
|
|
comment.type, comment.equation));
|
|
}
|
|
};
|
|
|
|
template <typename OpComment>
|
|
class BinaryLogicalOpInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
OpComment comment;
|
|
PADDLE_ENFORCE(context->HasInput("X"),
|
|
"Input(X) of %s operator must not be null", comment.type);
|
|
PADDLE_ENFORCE(context->HasInput("Y"),
|
|
"Input(Y) of %s operator must not be null", comment.type);
|
|
auto dim_x = context->GetInputDim("X");
|
|
auto dim_y = context->GetInputDim("Y");
|
|
PADDLE_ENFORCE_EQ(framework::product(dim_x), framework::product(dim_y),
|
|
"The number of elements in X and Y should be same");
|
|
|
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
|
context->ShareLoD("X", "Out");
|
|
}
|
|
};
|
|
|
|
template <typename OpComment>
|
|
class UnaryLogicalOpInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
OpComment comment;
|
|
PADDLE_ENFORCE(context->HasInput("X"),
|
|
"Input(X) of %s operator must not be null", comment.type);
|
|
auto dim_x = context->GetInputDim("X");
|
|
|
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
|
context->ShareLoD("X", "Out");
|
|
}
|
|
};
|
|
|
|
class LogicalOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
framework::OpKernelType kt = OperatorWithKernel::GetKernelType(ctx);
|
|
// LogicalOp kernel's device type is decided by input tensor place
|
|
kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
|
|
return kt;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
#define REGISTER_BINARY_LOGICAL_OP(op_type, _equation) \
|
|
struct _##op_type##Comment { \
|
|
static char type[]; \
|
|
static char equation[]; \
|
|
}; \
|
|
char _##op_type##Comment::type[]{#op_type}; \
|
|
char _##op_type##Comment::equation[]{_equation}; \
|
|
REGISTER_OPERATOR( \
|
|
op_type, ::paddle::operators::LogicalOp, \
|
|
::paddle::operators::BinaryLogicalOpProtoMaker<_##op_type##Comment>, \
|
|
::paddle::operators::BinaryLogicalOpInferShape<_##op_type##Comment>, \
|
|
::paddle::framework::EmptyGradOpMaker);
|
|
|
|
#define REGISTER_UNARY_LOGICAL_OP(op_type, _equation) \
|
|
struct _##op_type##Comment { \
|
|
static char type[]; \
|
|
static char equation[]; \
|
|
}; \
|
|
char _##op_type##Comment::type[]{#op_type}; \
|
|
char _##op_type##Comment::equation[]{_equation}; \
|
|
REGISTER_OPERATOR( \
|
|
op_type, ::paddle::operators::LogicalOp, \
|
|
::paddle::operators::UnaryLogicalOpProtoMaker<_##op_type##Comment>, \
|
|
::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \
|
|
::paddle::framework::EmptyGradOpMaker);
|
|
|
|
REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$");
|
|
REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU,
|
|
paddle::operators::LogicalAndFunctor);
|
|
REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$");
|
|
REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU,
|
|
paddle::operators::LogicalOrFunctor);
|
|
REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
|
|
REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
|
|
paddle::operators::LogicalNotFunctor);
|
|
REGISTER_BINARY_LOGICAL_OP(logical_xor,
|
|
"$$Out = (X || Y) \\, \\&\\& \\, !(X \\&\\& Y)$$");
|
|
REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
|
|
paddle::operators::LogicalXorFunctor);
|