You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
7.0 KiB
181 lines
7.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/reshape_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ReshapeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// input check
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of ReshapeOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of ReshapeOp should not be null.");
|
|
|
|
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
PADDLE_ENFORCE_EQ(shape.empty(), ctx->HasInput("Shape"),
|
|
"The shape information can only be set by Attr(shape) or "
|
|
"by Input(Shape). Attr(shape) and Input(Shape) cannot be "
|
|
"set at the same time.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
if (ctx->HasInput("Shape")) {
|
|
// The shape information in given by Input(Shape).
|
|
auto shape_dims = ctx->GetInputDim("Shape");
|
|
|
|
PADDLE_ENFORCE(shape_dims.size() == 2UL && shape_dims[0] == 1UL,
|
|
"The Input(Label) should be a 2-D tensor with the 1st "
|
|
"dimensions fixed to 1 (a row vector).");
|
|
|
|
// The actual output shape will be set at runtime, here temporially set
|
|
// the shape of output the same as the shape of input.
|
|
ctx->SetOutputDim("Out", x_dims);
|
|
} else {
|
|
// The shape information in given by Attr(shape).
|
|
std::vector<int64_t> output_shape;
|
|
ValidateShape(shape, framework::product(x_dims), output_shape);
|
|
|
|
auto out_dims = framework::make_ddim(output_shape);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
if (shape[0] == x_dims[0]) {
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
// are the same.
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
void ValidateShape(const std::vector<int> &shape, const int64_t in_size,
|
|
std::vector<int64_t> &output_shape) const {
|
|
std::vector<size_t> neg_dims_idx;
|
|
const int unknown_index = -1; // only one dimension canbe set to -1, whose
|
|
// size will be automatically infered.
|
|
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
PADDLE_ENFORCE(shape[i] > 1 || shape[i] == unknown_index,
|
|
"Each input dimension of Attr(shape) must be positive, or "
|
|
"only one input dimension can be -1.");
|
|
if (shape[i] == unknown_index) neg_dims_idx.push_back(i);
|
|
}
|
|
PADDLE_ENFORCE_LE(
|
|
neg_dims_idx.size(), 1,
|
|
"Only one input dimension of Attr(shape) may be unknown.");
|
|
|
|
int64_t inferred_dim = 0;
|
|
if (neg_dims_idx.size()) {
|
|
int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1,
|
|
std::multiplies<int>());
|
|
inferred_dim = in_size / (-capacity);
|
|
}
|
|
|
|
output_shape.resize(shape.size(), 0);
|
|
std::transform(shape.begin(), shape.end(), output_shape.begin(),
|
|
[](int a) { return static_cast<int64_t>(a); });
|
|
if (neg_dims_idx.size()) output_shape[neg_dims_idx[0]] = inferred_dim;
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The input tensor of reshape operator.");
|
|
AddInput(
|
|
"Shape",
|
|
"Tensor<int64_t>, a 1-D tensor that provides the shape information.")
|
|
.AsDispensable();
|
|
AddOutput("Out", "The output tensor of reshape operator.");
|
|
AddAttr<std::vector<int>>(
|
|
"shape", "(std::vector<int>) Target shape of reshape operator.")
|
|
.SetDefault(std::vector<int>());
|
|
AddAttr<bool>("inplace",
|
|
"Change the source tensor's shape without copy memory.")
|
|
.SetDefault(true);
|
|
AddComment(R"DOC(
|
|
Reshape Operator.
|
|
|
|
Reshape Input(X) into the shape specified by Attr(shape).
|
|
|
|
An example:
|
|
Given a 2-D tensor X with 2 rows and 2 columns : [[1, 2], [3, 4]]
|
|
|
|
and target shape = [1, 4], the reshape operator will transform
|
|
the tensor X into a 2-D tensor: [[1, 2, 3, 4]]
|
|
|
|
One dimension in the target shape can be set -1, representing that its
|
|
size is unknown. In this case, the real dimension will be infered from
|
|
the original shape of Input(X) and other dimensions in the target shape.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ReshapeGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
ReshapeGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
using CPU = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad,
|
|
ops::ReshapeGradOp);
|
|
REGISTER_OP_CPU_KERNEL(reshape, ops::ReshapeKernel<CPU, float>,
|
|
ops::ReshapeKernel<CPU, double>,
|
|
ops::ReshapeKernel<CPU, int>,
|
|
ops::ReshapeKernel<CPU, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(reshape_grad, ops::ReshapeGradKernel<CPU, float>,
|
|
ops::ReshapeGradKernel<CPU, double>,
|
|
ops::ReshapeGradKernel<CPU, int>,
|
|
ops::ReshapeGradKernel<CPU, int64_t>);
|