You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/platform/device_code.cc

277 lines
9.2 KiB

/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/device_code.h"
#include <sys/stat.h>
#include <algorithm>
#include <set>
#include <utility>
#include "paddle/fluid/platform/enforce.h"
DECLARE_string(cuda_dir);
namespace paddle {
namespace platform {
DeviceCodePool* DeviceCodePool::pool = nullptr;
void DeviceCodePool::Set(std::unique_ptr<DeviceCode>&& code) {
Place place = code->GetPlace();
std::string name = code->GetName();
auto iter = device_codes_.find(place);
if (iter == device_codes_.end()) {
PADDLE_THROW(platform::errors::NotFound(
"Place %s is not supported for runtime compiling.", place));
}
auto& codes_map = iter->second;
codes_map.emplace(name, std::move(code));
}
platform::DeviceCode* DeviceCodePool::Get(const platform::Place& place,
const std::string& name) {
auto iter = device_codes_.find(place);
if (iter == device_codes_.end()) {
PADDLE_THROW(platform::errors::NotFound(
"Place %s is not supported for runtime compiling.", place));
}
auto& codes_map = iter->second;
auto code_iter = codes_map.find(name);
if (code_iter == codes_map.end()) {
PADDLE_THROW(platform::errors::NotFound(
"Device code named %s for place %s does not exist.", name.c_str(),
place));
}
return code_iter->second.get();
}
DeviceCodePool::DeviceCodePool(const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(
places.size(), 0,
errors::InvalidArgument(
"Expected the number of places >= 1. Expected %d.", places.size()));
// Remove the duplicated places
std::set<Place> set;
for (auto& p : places) {
set.insert(p);
}
for (auto& p : set) {
if (is_gpu_place(p)) {
#ifdef PADDLE_WITH_CUDA
device_codes_.emplace(p, DeviceCodeMap());
#else
PADDLE_THROW(platform::errors::PreconditionNotMet(
"CUDAPlace is not supported, please re-compile with WITH_GPU=ON."));
#endif
}
}
}
#ifdef PADDLE_WITH_CUDA
static std::string FindCUDAIncludePath() {
auto EndWith = [](std::string str, std::string substr) -> bool {
size_t pos = str.rfind(substr);
return pos != std::string::npos && pos == (str.length() - substr.length());
};
struct stat st;
std::string cuda_include_path;
if (!FLAGS_cuda_dir.empty()) {
cuda_include_path = FLAGS_cuda_dir;
if (EndWith(cuda_include_path, "/")) {
cuda_include_path.erase(cuda_include_path.end() - 1);
}
for (std::string suffix : {"/lib", "/lib64"}) {
if (EndWith(FLAGS_cuda_dir, suffix)) {
cuda_include_path.erase(cuda_include_path.end() - suffix.length());
break;
}
}
if (!EndWith(cuda_include_path, "include")) {
cuda_include_path += "/include";
}
// Whether the cuda_include_path exists on the file system.
if (stat(cuda_include_path.c_str(), &st) == 0) {
return cuda_include_path;
}
}
cuda_include_path = "/usr/local/cuda/include";
if (stat(cuda_include_path.c_str(), &st) == 0) {
return cuda_include_path;
}
LOG(WARNING) << "Cannot find CUDA include path."
<< "Please check whether CUDA is installed in the default "
"installation path, or specify it by export "
"FLAGS_cuda_dir=xxx.";
return "";
}
CUDADeviceCode::CUDADeviceCode(const Place& place, const std::string& name,
const std::string& kernel) {
if (!is_gpu_place(place)) {
PADDLE_THROW(platform::errors::PermissionDenied(
"CUDADeviceCode can only launch on GPU place."));
}
place_ = place;
name_ = name;
kernel_ = kernel;
}
bool CUDADeviceCode::Compile(bool include_path) {
is_compiled_ = false;
if (!dynload::HasNVRTC() || !dynload::HasCUDADriver()) {
LOG(WARNING)
<< "NVRTC and CUDA driver are need for JIT compiling of CUDA code.";
return false;
}
nvrtcProgram program;
if (!CheckNVRTCResult(dynload::nvrtcCreateProgram(&program,
kernel_.c_str(), // buffer
name_.c_str(), // name
0, // numHeaders
nullptr, // headers
nullptr), // includeNames
"nvrtcCreateProgram")) {
return false;
}
// Compile the program for specified compute_capability
auto* dev_ctx = reinterpret_cast<CUDADeviceContext*>(
DeviceContextPool::Instance().Get(place_));
int compute_capability = dev_ctx->GetComputeCapability();
std::string compute_flag =
"--gpu-architecture=compute_" + std::to_string(compute_capability);
std::vector<const char*> options = {"--std=c++11", compute_flag.c_str()};
if (include_path) {
std::string cuda_include_path = FindCUDAIncludePath();
if (!cuda_include_path.empty()) {
std::string include_option = "--include-path=" + cuda_include_path;
options.push_back(include_option.c_str());
}
}
nvrtcResult compile_result =
dynload::nvrtcCompileProgram(program, // program
options.size(), // numOptions
options.data()); // options
if (compile_result == NVRTC_ERROR_COMPILATION) {
// Obtain compilation log from the program
size_t log_size;
if (!CheckNVRTCResult(dynload::nvrtcGetProgramLogSize(program, &log_size),
"nvrtcGetProgramLogSize")) {
return false;
}
std::vector<char> log;
log.resize(log_size + 1);
if (!CheckNVRTCResult(dynload::nvrtcGetProgramLog(program, log.data()),
"nvrtcGetProgramLog")) {
return false;
}
LOG(WARNING) << "JIT compiling of CUDA code failed:"
<< "\n Kernel name: " << name_ << "\n Kernel body:\n"
<< kernel_ << "\n Compiling log: " << log.data();
return false;
}
// Obtain PTX from the program
size_t ptx_size;
if (!CheckNVRTCResult(dynload::nvrtcGetPTXSize(program, &ptx_size),
"nvrtcGetPTXSize")) {
return false;
}
ptx_.resize(ptx_size + 1);
if (!CheckNVRTCResult(dynload::nvrtcGetPTX(program, ptx_.data()),
"nvrtcGetPTX")) {
return false;
}
if (!CheckNVRTCResult(dynload::nvrtcDestroyProgram(&program),
"nvrtcDestroyProgram")) {
return false;
}
if (!CheckCUDADriverResult(dynload::cuModuleLoadData(&module_, ptx_.data()),
"cuModuleLoadData")) {
return false;
}
if (!CheckCUDADriverResult(
dynload::cuModuleGetFunction(&function_, module_, name_.c_str()),
"cuModuleGetFunction")) {
return false;
}
max_threads_ = dev_ctx->GetMaxPhysicalThreadCount();
is_compiled_ = true;
return true;
}
void CUDADeviceCode::Launch(const size_t n, std::vector<void*>* args) const {
PADDLE_ENFORCE_EQ(
is_compiled_, true,
errors::PreconditionNotMet(
"Please compile the code before launching the kernel."));
int max_blocks = std::max(max_threads_ / num_threads_, 1);
int workload_per_block = workload_per_thread_ * num_threads_;
int num_blocks =
std::min(max_blocks, (static_cast<int>(n) + workload_per_block - 1) /
workload_per_block);
auto* dev_ctx = reinterpret_cast<CUDADeviceContext*>(
DeviceContextPool::Instance().Get(place_));
PADDLE_ENFORCE_EQ(
dynload::cuLaunchKernel(function_, num_blocks, 1, 1, // grid dim
num_threads_, 1, 1, // block dim
0, // shared memory
dev_ctx->stream(), // stream
args->data(), // arguments
nullptr),
CUDA_SUCCESS,
errors::External("Fail to launch kernel %s (in cuLaunchKernel.)",
name_.c_str()));
}
bool CUDADeviceCode::CheckNVRTCResult(nvrtcResult result,
std::string function) {
if (result != NVRTC_SUCCESS) {
LOG(WARNING) << "Call " << function
<< " failed: " << dynload::nvrtcGetErrorString(result);
return false;
}
return true;
}
bool CUDADeviceCode::CheckCUDADriverResult(CUresult result,
std::string function) {
if (result != CUDA_SUCCESS) {
const char* error = nullptr;
LOG(WARNING) << "Call " << function
<< " failed: " << dynload::cuGetErrorString(result, &error);
return false;
}
return true;
}
#endif
} // namespace platform
} // namespace paddle