You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_dataset.py

274 lines
9.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TestCases for Dataset,
including create, config, run, etc.
"""
from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
import os
import shutil
import unittest
class TestDataset(unittest.TestCase):
""" TestCases for Dataset. """
def test_dataset_create(self):
""" Testcase for dataset create. """
try:
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
except:
self.assertTrue(False)
try:
dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
except:
self.assertTrue(False)
try:
dataset = fluid.DatasetFactory().create_dataset(
"FileInstantDataset")
except:
self.assertTrue(False)
try:
dataset = fluid.DatasetFactory().create_dataset("MyOwnDataset")
self.assertTrue(False)
except:
self.assertTrue(True)
def test_dataset_config(self):
""" Testcase for dataset configuration. """
dataset = fluid.core.Dataset("MultiSlotDataset")
dataset.set_thread_num(12)
dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
dataset.set_trainer_num(4)
dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
thread_num = dataset.get_thread_num()
self.assertEqual(thread_num, 12)
filelist = dataset.get_filelist()
self.assertEqual(len(filelist), 3)
self.assertEqual(filelist[0], "a.txt")
self.assertEqual(filelist[1], "b.txt")
self.assertEqual(filelist[2], "c.txt")
trainer_num = dataset.get_trainer_num()
self.assertEqual(trainer_num, 4)
name, ugi = dataset.get_hdfs_config()
self.assertEqual(name, "my_fs_name")
self.assertEqual(ugi, "my_fs_ugi")
def test_in_memory_dataset_run(self):
"""
Testcase for InMemoryDataset from create to run.
"""
with open("test_in_memory_dataset_run_a.txt", "w") as f:
data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
f.write(data)
with open("test_in_memory_dataset_run_b.txt", "w") as f:
data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
f.write(data)
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = fluid.layers.data(
name=slot, shape=[1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_batch_size(32)
dataset.set_thread(3)
dataset.set_filelist([
"test_in_memory_dataset_run_a.txt",
"test_in_memory_dataset_run_b.txt"
])
dataset.set_pipe_command("cat")
dataset.set_use_var(slots_vars)
dataset.load_into_memory()
dataset.set_fea_eval(10000, True)
dataset.slots_shuffle(["slot1"])
dataset.local_shuffle()
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
for i in range(2):
try:
exe.train_from_dataset(fluid.default_main_program(), dataset)
except ImportError as e:
pass
except Exception as e:
self.assertTrue(False)
os.remove("./test_in_memory_dataset_run_a.txt")
os.remove("./test_in_memory_dataset_run_b.txt")
def test_in_memory_dataset_run_2(self):
"""
Testcase for InMemoryDataset from create to run.
Use CUDAPlace
Use float type id
"""
with open("test_in_memory_dataset_run_a.txt", "w") as f:
data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
f.write(data)
with open("test_in_memory_dataset_run_b.txt", "w") as f:
data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
f.write(data)
slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
slots_vars = []
for slot in slots:
var = fluid.layers.data(
name=slot, shape=[1], dtype="float32", lod_level=1)
slots_vars.append(var)
dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
dataset.set_batch_size(32)
dataset.set_thread(3)
dataset.set_filelist([
"test_in_memory_dataset_run_a.txt",
"test_in_memory_dataset_run_b.txt"
])
dataset.set_pipe_command("cat")
dataset.set_use_var(slots_vars)
dataset.load_into_memory()
dataset.local_shuffle()
exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
for i in range(2):
try:
exe.train_from_dataset(fluid.default_main_program(), dataset)
except ImportError as e:
pass
except Exception as e:
self.assertTrue(False)
os.remove("./test_in_memory_dataset_run_a.txt")
os.remove("./test_in_memory_dataset_run_b.txt")
def test_queue_dataset_run(self):
"""
Testcase for QueueDataset from create to run.
"""
with open("test_queue_dataset_run_a.txt", "w") as f:
data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
f.write(data)
with open("test_queue_dataset_run_b.txt", "w") as f:
data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
f.write(data)
slots = ["slot1", "slot2", "slot3", "slot4"]
slots_vars = []
for slot in slots:
var = fluid.layers.data(
name=slot, shape=[1], dtype="int64", lod_level=1)
slots_vars.append(var)
dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
dataset.set_batch_size(32)
dataset.set_thread(3)
dataset.set_filelist(
["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
dataset.set_pipe_command("cat")
dataset.set_use_var(slots_vars)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
for i in range(2):
try:
exe.train_from_dataset(fluid.default_main_program(), dataset)
except ImportError as e:
pass
except Exception as e:
self.assertTrue(False)
os.remove("./test_queue_dataset_run_a.txt")
os.remove("./test_queue_dataset_run_b.txt")
def test_queue_dataset_run_2(self):
"""
Testcase for QueueDataset from create to run.
Use CUDAPlace
Use float type id
"""
with open("test_queue_dataset_run_a.txt", "w") as f:
data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
f.write(data)
with open("test_queue_dataset_run_b.txt", "w") as f:
data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
f.write(data)
slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
slots_vars = []
for slot in slots:
var = fluid.layers.data(
name=slot, shape=[1], dtype="float32", lod_level=1)
slots_vars.append(var)
dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
dataset.set_batch_size(32)
dataset.set_thread(3)
dataset.set_filelist(
["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
dataset.set_pipe_command("cat")
dataset.set_use_var(slots_vars)
exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
for i in range(2):
try:
exe.train_from_dataset(fluid.default_main_program(), dataset)
except ImportError as e:
pass
except Exception as e:
self.assertTrue(False)
os.remove("./test_queue_dataset_run_a.txt")
os.remove("./test_queue_dataset_run_b.txt")
if __name__ == '__main__':
unittest.main()