You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.6 KiB
77 lines
2.6 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from parallel_executor_test_base import TestParallelExecutorBase
|
|
|
|
|
|
def fc_with_batchnorm(use_feed):
|
|
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
hidden = img
|
|
for _ in range(3):
|
|
hidden = fluid.layers.fc(
|
|
hidden,
|
|
size=200,
|
|
act='tanh',
|
|
bias_attr=fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=1.0)))
|
|
|
|
hidden = fluid.layers.batch_norm(input=hidden)
|
|
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
loss = fluid.layers.mean(loss)
|
|
return loss
|
|
|
|
|
|
class TestIrInplace(TestParallelExecutorBase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
os.environ['CPU_NUM'] = str(4)
|
|
|
|
def _fc_with_batchnorm(self, ir_memory_optimize, enable_inplace):
|
|
|
|
if not core.is_compiled_with_cuda():
|
|
return
|
|
np.random.seed(5)
|
|
img = np.random.random(size=[32, 784]).astype(np.float32)
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
self.check_network_convergence(
|
|
fc_with_batchnorm,
|
|
feed_dict={"image": img,
|
|
"label": label},
|
|
use_cuda=True,
|
|
use_ir_memory_optimize=ir_memory_optimize,
|
|
enable_inplace=enable_inplace)
|
|
|
|
def test_fc_with_batchnorm(self, delta=1e-3):
|
|
loss00 = self._fc_with_batchnorm(False, False)
|
|
loss10 = self._fc_with_batchnorm(True, False)
|
|
loss01 = self._fc_with_batchnorm(False, True)
|
|
loss11 = self._fc_with_batchnorm(True, True)
|
|
self.assertAlmostEqual(loss00, loss10, delta=delta)
|
|
self.assertAlmostEqual(loss00, loss01, delta=delta)
|
|
self.assertAlmostEqual(loss00, loss11, delta=delta)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|