You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sequence_ops/sequence_concat_op.cc

150 lines
5.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_ops/sequence_concat_op.h"
#include <memory>
#include <vector>
namespace paddle {
namespace operators {
class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The inputs of sequence concat op").AsDuplicable();
AddOutput("Out", "The output of sequence concat op");
AddComment(
"Sequence Concat Op\n"
"It will concat LoD tensors by its sequence information.\n"
"For example:\n"
" LoD of X1 = [0, 3, 7]\n"
" LoD of X2 = [0, 7, 9]\n"
" Result LoD is [0, (3+7), (7+9)]\n"
" i.e.[0, 10, 16]\n");
}
};
class SequenceConcatOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE_EQ(
context->HasInputs("X"), true,
platform::errors::NotFound("SequenceConcatOp Input(X) of Sequence "
"Concat Op should not be null."));
PADDLE_ENFORCE_EQ(
context->HasOutput("Out"), true,
platform::errors::NotFound("SequenceConcatOp Output(Out) of Sequence "
"Concat Op should not be null."));
PADDLE_ENFORCE_GT(context->Inputs("X").size(), 1,
platform::errors::InvalidArgument(
"The number of SequenceConcatOp inputs should be "
"greater than 1. But "
"the number of inputs we received is %d",
context->Inputs("X").size()));
auto x_dims = context->GetInputsDim("X");
int64_t batch_size = 0;
int64_t feature_size = 0;
std::vector<int64_t> out_dims;
for (auto &x_dim : x_dims) {
if (out_dims.empty()) {
out_dims = framework::vectorize(x_dim);
}
batch_size += x_dim[0];
if (feature_size == 0) {
feature_size = framework::product(x_dim) / x_dim[0];
} else {
PADDLE_ENFORCE_EQ(
feature_size, framework::product(x_dim) / x_dim[0],
platform::errors::InvalidArgument(
"Each input of SequenceConcatOp inputs must have same feature "
"size, But "
"the feature size we received is %d, the feature size of 1st "
"input is %d",
feature_size, framework::product(x_dim) / x_dim[0]));
}
}
if (batch_size < 0) {
batch_size = -1; // Normalize batch size for compile time.
}
out_dims[0] = batch_size;
context->SetOutputDim("Out", framework::make_ddim(out_dims));
if (!context->IsRuntime()) { // Runtime LoD infershape will be computed
// in Kernel.
context->ShareLoD("X", "Out");
}
}
};
template <typename T>
class SeqConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("sequence_concat_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
op->SetAttrMap(this->Attrs());
}
};
class SeqConcatGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *context) const override {
context->SetOutputsDim(framework::GradVarName("X"),
context->GetInputsDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SeqConcatGradNoNeedBufferVarsInference,
"X");
} // namespace operators
} // namespace paddle
namespace op = paddle::operators;
REGISTER_OPERATOR(sequence_concat, op::SequenceConcatOp, op::SeqConcatOpMaker,
op::SeqConcatGradOpMaker<paddle::framework::OpDesc>,
op::SeqConcatGradOpMaker<paddle::imperative::OpBase>);
template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>,
Kernel<int>, Kernel<int64_t>);
REGISTER_OPERATOR(sequence_concat_grad, op::SeqConcatGradOp,
op::SeqConcatGradNoNeedBufferVarsInference);
template <typename T>
using GradKernel =
op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
GradKernel<double>, GradKernel<int>,
GradKernel<int64_t>);