You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.1 KiB
178 lines
6.1 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
#include "boost/optional.hpp"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/concat_and_split.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
namespace detail {
|
|
template <typename Container>
|
|
inline framework::LoD ConcatLoD(const Container &xs,
|
|
std::vector<framework::Tensor> *xs_in_order) {
|
|
std::vector<size_t> result;
|
|
result.resize(xs[0].get().lod()[0].size());
|
|
|
|
for (size_t i = 1; i < result.size(); ++i) {
|
|
size_t sum = 0;
|
|
for (size_t j = 0; j < xs.size(); ++j) {
|
|
auto &x_lod = xs[j].get().lod()[0];
|
|
const framework::Tensor &tensor = xs[j].get();
|
|
if (x_lod[i - 1] < x_lod[i]) {
|
|
xs_in_order->emplace_back(tensor.Slice(x_lod[i - 1], x_lod[i]));
|
|
}
|
|
sum += x_lod[i];
|
|
}
|
|
result[i] = sum;
|
|
}
|
|
framework::LoD lod;
|
|
lod.emplace_back(result);
|
|
return lod;
|
|
}
|
|
|
|
template <typename T, typename... ARGS>
|
|
inline std::vector<std::reference_wrapper<T>> GetDataVectorSafely(
|
|
const std::vector<T *> &vec, ARGS &&... args) {
|
|
std::vector<std::reference_wrapper<T>> result;
|
|
result.reserve(vec.size());
|
|
for (auto *ptr : vec) {
|
|
PADDLE_ENFORCE_NOT_NULL(ptr, platform::errors::InvalidArgument(
|
|
"The input variable X contains nullptr."));
|
|
result.emplace_back(*ptr);
|
|
}
|
|
return result;
|
|
}
|
|
} // namespace detail
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SeqConcatKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto xs = detail::GetDataVectorSafely(
|
|
context.MultiInput<framework::LoDTensor>("X"));
|
|
auto &out = *context.Output<framework::LoDTensor>("Out");
|
|
|
|
size_t lod_size = 0;
|
|
for (auto &x : xs) {
|
|
if (lod_size == 0) {
|
|
PADDLE_ENFORCE_EQ(x.get().lod().empty(), false,
|
|
platform::errors::NotFound(
|
|
"Input(X) Tensor of SequenceConcatOp does not "
|
|
"contain LoD information."));
|
|
lod_size = x.get().lod()[0].size();
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(lod_size, x.get().lod()[0].size(),
|
|
platform::errors::InvalidArgument(
|
|
"The lod size of each input must be the same, "
|
|
"But the lod size of input we received is %d, "
|
|
"the first input is %d",
|
|
x.get().lod()[0].size(), lod_size));
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_NE(
|
|
lod_size, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Each input must have sequence lod information. But we "
|
|
"received input lod size is %d",
|
|
lod_size));
|
|
|
|
std::vector<framework::Tensor> x_in_order;
|
|
out.set_lod(detail::ConcatLoD(xs, &x_in_order));
|
|
out.mutable_data<T>(context.GetPlace());
|
|
math::ConcatFunctor<DeviceContext, T> functor;
|
|
functor(context.template device_context<DeviceContext>(), x_in_order, 0,
|
|
&out);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class SeqConcatGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &context) const override {
|
|
auto xs = context.MultiInput<framework::LoDTensor>("X");
|
|
auto dxs =
|
|
context.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
|
|
PADDLE_ENFORCE_EQ(xs.size(), dxs.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The rank of Input X and Output Grad X must be "
|
|
"same, But the rank of Input X we received is %d, "
|
|
"the rank of Output Grad X is %d",
|
|
xs.size(), dxs.size()));
|
|
for (size_t i = 0; i < dxs.size(); ++i) {
|
|
if (dxs[i] != nullptr) {
|
|
dxs[i]->set_lod(xs[i]->lod());
|
|
dxs[i]->mutable_data<T>(context.GetPlace());
|
|
}
|
|
}
|
|
|
|
std::vector<framework::Tensor> sliced_x;
|
|
std::vector<boost::optional<framework::Tensor>> sliced_dx;
|
|
|
|
for (size_t i = 1; i < xs[0]->lod()[0].size(); ++i) {
|
|
for (size_t j = 0; j < xs.size(); ++j) {
|
|
const framework::LoDTensor *x = xs[j];
|
|
framework::DDim x_dims = x->dims();
|
|
|
|
framework::LoDTensor *dx = dxs[j];
|
|
auto &x_lod = x->lod()[0];
|
|
if (x_lod[i - 1] == x_lod[i]) continue;
|
|
|
|
auto prev_lod = x_lod[i - 1];
|
|
auto next_lod = x_lod[i];
|
|
|
|
x_dims[0] = next_lod - prev_lod;
|
|
|
|
sliced_x.emplace_back();
|
|
sliced_x.back().Resize(x_dims);
|
|
|
|
if (dx) {
|
|
sliced_dx.emplace_back(dx->Slice(prev_lod, next_lod));
|
|
} else {
|
|
sliced_dx.emplace_back(boost::none);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<const framework::Tensor *> sliced_x_ptr;
|
|
sliced_x_ptr.reserve(sliced_x.size());
|
|
for (auto &x : sliced_x) {
|
|
sliced_x_ptr.emplace_back(&x);
|
|
}
|
|
|
|
std::vector<framework::Tensor *> sliced_dx_ptr;
|
|
sliced_dx_ptr.reserve(sliced_dx.size());
|
|
for (auto &dx : sliced_dx) {
|
|
if (dx) {
|
|
sliced_dx_ptr.emplace_back(&dx.get());
|
|
}
|
|
}
|
|
|
|
math::SplitFunctor<DeviceContext, T> functor;
|
|
functor(context.template device_context<DeviceContext>(),
|
|
GET_DATA_SAFELY(
|
|
context.Input<framework::Tensor>(framework::GradVarName("Out")),
|
|
"Input", framework::GradVarName("Out"), "SeqConcatGrad"),
|
|
sliced_x_ptr, 0, &sliced_dx_ptr);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|