You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/benchmark/fluid/kube_gen_job.py

211 lines
7.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml
import copy
import argparse
import random
import os
import copy
from kube_templates import pserver, trainer, envs
def parse_args():
parser = argparse.ArgumentParser(description='Generate dist job yamls.')
parser.add_argument(
'--jobname', default="paddlejob", help='unique job name')
parser.add_argument(
'--cpu', default=1, type=int, help='CPU cores per trainer node')
parser.add_argument(
'--pscpu', default=1, type=int, help='CPU cores per pserver node')
parser.add_argument(
'--gpu', default=0, type=int, help='num of GPUs per node')
parser.add_argument(
'--image',
default="bootstrapper:5000/fluid_benchmark:gpu",
help='num of GPUs per node')
parser.add_argument(
'--pservers', default=1, type=int, help='num of pservers')
parser.add_argument(
'--trainers', default=1, type=int, help='num of trainers')
parser.add_argument('--memory', default=1, type=int, help='trainer memory')
parser.add_argument(
'--psmemory', default=1, type=int, help='pserver memory')
parser.add_argument(
'--port', default=30236, type=int, help='num of trainers')
parser.add_argument(
'--entry', default="python train.py", help='command to run')
parser.add_argument(
'--fluid', default=1, type=int, help='whether is fluid job')
parser.add_argument(
'--rdma', action='store_true', help='whether mount rdma libs')
parser.add_argument(
'--disttype',
default="pserver",
type=str,
choices=['pserver', 'nccl2', 'local'],
help='pserver or nccl2 or local')
args = parser.parse_args()
return args
def gen_job():
ps = pserver
tn = trainer
args = parse_args()
ps_container = ps["spec"]["template"]["spec"]["containers"][0]
tn_container = tn["spec"]["template"]["spec"]["containers"][0]
if args.fluid == 1:
ps_container["command"] = \
["paddle_k8s", "start_fluid"]
tn_container["command"] = \
["paddle_k8s", "start_fluid"]
ps["metadata"]["name"] = args.jobname + "-pserver"
ps["spec"]["template"]["metadata"]["labels"][
"paddle-job-pserver"] = args.jobname
tn["metadata"]["name"] = args.jobname + "-trainer"
tn["spec"]["template"]["metadata"]["labels"]["paddle-job"] = args.jobname
ps_container["image"] = args.image
tn_container["image"] = args.image
ps_container["resources"]["requests"]["cpu"] = str(args.pscpu)
ps_container["resources"]["requests"]["memory"] = str(args.psmemory) + "Gi"
ps_container["resources"]["limits"]["cpu"] = str(args.pscpu)
ps_container["resources"]["limits"]["memory"] = str(args.psmemory) + "Gi"
tn_container["resources"]["requests"]["cpu"] = str(args.cpu)
tn_container["resources"]["requests"]["memory"] = str(args.memory) + "Gi"
tn_container["resources"]["limits"]["cpu"] = str(args.cpu)
tn_container["resources"]["limits"]["memory"] = str(args.memory) + "Gi"
if args.gpu > 0:
tn_container["resources"]["requests"][
"alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)
tn_container["resources"]["limits"][
"alpha.kubernetes.io/nvidia-gpu"] = str(args.gpu)
ps["spec"]["replicas"] = int(args.pservers)
tn["spec"]["parallelism"] = int(args.trainers)
tn["spec"]["completions"] = int(args.trainers)
ps_container["ports"][0]["name"] = "jobport-" + str(args.port)
ps_container["ports"][0]["containerPort"] = args.port
spreadport = random.randint(40000, 60000)
tn_container["ports"][0]["name"] = "spr-" + str(spreadport)
tn_container["ports"][0]["containerPort"] = spreadport
envs.append({"name": "PADDLE_JOB_NAME", "value": args.jobname})
envs.append({"name": "PADDLE_TRAINERS", "value": str(args.trainers)})
envs.append({"name": "PADDLE_PSERVERS", "value": str(args.pservers)})
envs.append({"name": "ENTRY", "value": args.entry})
envs.append({"name": "PADDLE_PSERVER_PORT", "value": str(args.port)})
# NOTE: these directories below are cluster specific, please modify
# this settings before you run on your own cluster.
envs.append({
"name": "LD_LIBRARY_PATH",
"value":
"/usr/local/lib:/usr/local/nvidia/lib64:/usr/local/rdma/lib64:/usr/lib64/mlnx_ofed/valgrind"
})
volumes = [{
"name": "nvidia-driver",
"hostPath": {
"path": "/usr/local/nvidia/lib64"
}
}]
volumeMounts = [{
"mountPath": "/usr/local/nvidia/lib64",
"name": "nvidia-driver"
}]
if args.rdma:
volumes.extend([{
"name": "ibetc",
"hostPath": {
"path": "/etc/libibverbs.d"
}
}, {
"name": "iblibs",
"hostPath": {
"path": "/usr/local/rdma"
}
}, {
"name": "valgrind",
"hostPath": {
"path": "/usr/lib64/mlnx_ofed/valgrind"
}
}])
volumeMounts.extend([{
"mountPath": "/etc/libibverbs.d",
"name": "ibetc"
}, {
"mountPath": "/usr/local/rdma",
"name": "iblibs"
}, {
"mountPath": "/usr/lib64/mlnx_ofed/valgrind",
"name": "valgrind"
}])
# append shm for NCCL2
volumes.append({"name": "dshm", "emptyDir": {"medium": "Memory"}})
volumeMounts.append({"mountPath": "/dev/shm", "name": "dshm"})
# add ceph volumes
volumes.append({
"name": "ceph-data",
"cephfs": {
"monitors": ["192.168.16.23:6789"],
"secretRef": {
"name": "ceph-secret"
},
"user": "admin",
}
})
volumeMounts.append({"mountPath": "/mnt/data", "name": "ceph-data"})
tn["spec"]["template"]["spec"]["volumes"] = volumes
tn_container["volumeMounts"] = volumeMounts
ps_container["env"] = copy.deepcopy(envs)
ps_container["env"].append({
"name": "PADDLE_TRAINING_ROLE",
"value": "PSERVER"
})
tn_container["env"] = envs
if args.disttype == "pserver":
tn_container["env"].append({
"name": "PADDLE_TRAINING_ROLE",
"value": "TRAINER"
})
elif args.disttype == "nccl2" or args.disttype == "local":
# NCCL2 have no training role, set to plain WORKER
tn_container["env"].append({
"name": "PADDLE_TRAINING_ROLE",
"value": "WORKER"
})
os.mkdir(args.jobname)
if args.disttype == "pserver":
with open("%s/pserver.yaml" % args.jobname, "w") as fn:
yaml.dump(ps, fn)
with open("%s/trainer.yaml" % args.jobname, "w") as fn:
yaml.dump(tn, fn)
if __name__ == "__main__":
gen_job()