You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/clip_op.cc

118 lines
4.1 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/clip_op.h"
#include <memory>
namespace paddle {
namespace operators {
class ClipOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ClipOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ClipOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto max = ctx->Attrs().Get<float>("max");
auto min = ctx->Attrs().Get<float>("min");
PADDLE_ENFORCE_LT(min, max, "max should be greater than min.");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
template <typename AttrType>
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"Tensor, the input of clip op, data type should be float32 or "
"float64.");
AddOutput(
"Out",
"Tensor, the clipped tensor, with the same shape and data type as "
"input(x)");
AddAttr<AttrType>("min", "float number, the minimum value to clip by.");
AddAttr<AttrType>("max", "float number, the maximum value to clip by.");
AddComment(R"DOC(
Clip Operator.
The clip operator limits the value of given input within an interval [min, max],
just as the following equation,
$$
Out = \MIN(\MAX(x, min), max)
$$
)DOC");
}
};
class ClipOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
}
};
template <typename T>
class ClipGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
std::unique_ptr<T> Apply() const override {
std::unique_ptr<T> op(new T());
op->SetType("clip_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
return op;
}
};
DECLARE_INPLACE_OP_INFERER(ClipInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ClipGradInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(clip, ops::ClipOp, ops::ClipOpMaker<float>,
ops::ClipGradOpMaker<paddle::framework::OpDesc>,
ops::ClipGradOpMaker<paddle::imperative::OpBase>,
ops::ClipInplaceInferer);
REGISTER_OPERATOR(clip_grad, ops::ClipOpGrad, ops::ClipGradInplaceInferer);
REGISTER_OP_CPU_KERNEL(
clip, ops::ClipKernel<paddle::platform::CPUDeviceContext, float>,
ops::ClipKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
clip_grad, ops::ClipGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ClipGradKernel<paddle::platform::CPUDeviceContext, double>);